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Programme

1. Linear Algebra from a variational point of view

2. Short introduction to the Finite Element method (FEM) and
adaptive FEM

3. Complex networks
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Programme

Linear Algebra from a variational point of view:

I finite dimensional spaces on IRN with a norm based on a
positive definite matrix A: a finite dimensional Hilbert spaces
theory

I duality and convergence in dual norm

I relations between finite-element approximation matrices and
measure of the error in energy

I Golub-Kahan bidiagonalisation method and elliptic singular
values
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Programme

Short introduction to the Finite Element method (FEM) and
adaptive FEM:

I How to use the properties of finite dimensional Hilbert spaces
in order to detect where we need to improve the mesh

I Interplay between mesh graphs and matrices

I Fiedler vectors and partitioning of graphs

I Elements of Domain Decomposition techniques

I Adaptive methods and a posteriori measures of the algebraic
errors within the Krylov iterative methods
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Programme

Complex networks

I Elementary introductions to random graphs (Erdos-Renyi,
Barabasi-Albert, and Watts- Strogatz random models) and
complex graphs2: random models vs real life models

I Embedding of a graph in RN: quantum graphs and
1D-simplex domains

I Solution of systems of parabolic equations on a quantum
graph3: Hamiltonians on graphs

I Applications in material science: Dirac’s model on graphene
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Prologue

When I’m feeling sad
I simply remember my favorite things

And then I don’t feel so bad
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Les boules
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Les boules
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Les boules

V (N) =
π

N
2

Γ(N2 + 1)

IS the Volume of the N-dimensional Sphere and

lim
N→∞

V (N)→ 0
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Les boules

v =
1√
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Les boules

FUNCTIONAL ANALYSIS IS LINEAR ALGEBRA COPING WITH
STRANGE BALLS
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Some friends

G =


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
d
dt on the interval [0, 1]
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Some friends

GTG =


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d2

(dt)2
Laplacian with Neumann conditions on the interval [0, 1]
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Some friends
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Some friends

G =


1 −1
1 −1
1 −1
1 −1


G is the INCIDENCE MATRIX of the graph and the grad operator.
GTG is the LAPLACIAN on the graph.
I− GTG is the ADJACENCY matrix of the graph.
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Some friends

We do not need a regular graph. On each edge, we have a map
from the IRN space where it lives to the segment [0, 1] and we can
solve on each edge the local operator!!
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Some friends
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Some friends
We can insert points on each edge
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Some friends
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TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.

6 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.

c(N)||v ||1 ≤ ||v ||2 ≤ C (N)||v ||1

6 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.
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TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.

c(N)||v ||1 ≤ ||v ||2 ≤ C (N)||v ||1

Identify the norms for which we have

c||v ||1 ≤ ||v ||2 ≤ C ||v ||1 i.e. || · ||1 ∼ || · ||2
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Lecture 1
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Finite dimensional Hilbert spaces and IRN

I (·, ·) : H× H→ IR scalar product and
‖u‖H =

√
(u, u) ∀u ∈ H norm.

I ∃{ψi}i=1,...,N a basis for H

∀u ∈ H u =
∑N

i=1 uiψi ui ∈ IR i = 1, . . . ,N

I Representation of scalar product in IRN .
Let u =

∑N
i=1 uiψi and v =

∑N
i=1 viψi .

Then

(u, v) =
N∑
i=1

N∑
j=1

uivj(ψi , ψj) = vTHu

where Hij = Hji = (ψi , ψj) and u, v ∈ IRN .
Moreover, uTHu > 0 iff u 6= 0 and, thus H SPD.
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Dual space H?

I f ∈ H? : H→ IR (functional);

I f (αu + βv) = αf (u) + βf (v) ∀u, v ∈ H

I H? is the space of the linear functionals on H

‖f ‖?H = sup
u 6=0

f (u)

‖u‖H

I If H finite dimensional and u =
∑N

i=1 uiψi , then

f (u) =
∑N

i=1 ui f (ψi ) = fTu

I Dual vector
Let u ∈ H, u 6= 0, then ∃fu ∈ H? such that

fu(u) = ‖u‖H

(Hahn-Banach).
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Dual space H?

I Let H be a Hilbert finite dimensional space and H the real
N × N matrix identifying the scalar product.

I

fu(u) = fTu = (uTHu)1/2

The dual vector of u has the following representation:
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Dual space H?

I Let H be a Hilbert finite dimensional space and H the real
N × N matrix identifying the scalar product.

I

fu(u) = fTu = (uTHu)1/2

The dual vector of u has the following representation:

f =
Hu

‖u‖H

and
‖fu‖2

H? = uTHu = fTH−1f
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Dual space basis

I The general definitions of a dual basis for H is

φj(ψi ) =

{
1 i = j
0 i 6= j

I The φi are linearly independent:

N∑
i=1

βiφi (u) = 0 ∀u ∈ H=⇒
N∑
i=1

βiφi (ψi ) = 0=⇒βi = 0.

I f (ψi ) = γi and f (u) = f (
∑N

i=1 uiψi ) =
∑N

i=1 γiui

φi (u) = φ(
N∑
i=1

uiψi ) = ui=⇒f =
N∑
i=1

αiφi
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Linear operator

I A : H −→ V where H and V finite dimensional Hilbert
spaces. H and V are the SPD matrices of the scalar products

I

‖A ‖H,V = max
u 6=0

‖A u‖V
‖u‖H

= ‖V1/2AH−1/2‖2

I The result follows from the generalized eigenvalue problem in
IRN

ATVAu = λHu

I

κH(M) = ‖M‖H,H−1‖M−1‖H−1,H.
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Linear operator

I A : H −→ V where H and V finite dimensional Hilbert
spaces. H and V are the SPD matrices of the scalar products

I

‖A ‖H,V = max
u 6=0

‖A u‖V
‖u‖H

= ‖V1/2AH−1/2‖2

I The result follows from the generalized eigenvalue problem in
IRN

ATVAu = λHu

I

κH(M) = ‖M‖H,H−1‖M−1‖H−1,H.

The interesting case is κH(M) independent of N
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Hilbert Space Setting: duality and adjoint

Given z ∈ H?, we have

〈z , u〉H?,H = zTu = zTH−1Hu = (u,H−1z)H,

w = H−1z Riesz vector corresponding to w =
∑

j wjφj ∈ H.
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Let C : H 7→ F
C ? : F? 7→ H? (adjoint operator)

〈C ?v , u〉H?,H , 〈v ,C u〉F?,F ∀v ∈ F?, u ∈ H.

Therefore, we have

〈C ?v , u〉H?,H = (Cu,F−1v)F = uTCTv.
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Hilbert Space Setting: normal equations

If we assume that F = H? then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C ? ◦H −1 ◦ C : H 7→ H?,

and it is represented by the matrix

CTH−1C.
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Hilbert Space Setting: normal equations

If we assume that F = H? then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C ? ◦H −1 ◦ C : H 7→ H?,

and it is represented by the matrix

CTH−1C.

If CT = C then the corresponding operator C is self-adjoint.
Moreover, we have that the operator

H −1 ◦ C : H 7→ H

maps H into itself. (
H −1 ◦ C

)i
, (H−1C)i .

14 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Linear operators

Let us consider now the Hilbert spaces

M := (IRn, ‖ · ‖M), N := (IRm, ‖ · ‖N),

and their dual spaces

M? := (IRn, ‖ · ‖M−1), N? := (IRm, ‖ · ‖N−1),
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A : N→M?

〈A y , u〉M?,M , (u,M−1Ay)M = uTAy, y ∈ N,∀u ∈M,
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Linear operators
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Linear operators

C =

[
M A
AT −N

]
C : M×N 7→M? ×N?.

The scalar product in M×N is represented by the matrix

H =

[
M

N

]
.
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Lecture 2
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Linear systems: variational framework

I Find u ∈ H such that for all v ∈ H

a(u, v) = L(v) (L(·) ∈ H? dual space of H)

I Existence and uniqueness: ∀v,w ∈ H

a(w, v) ≤ C1‖w‖H‖v‖H
sup

w∈H\{0}

a(w, v)

‖w‖H
≥ C2‖v‖H

I H = (IRN , || · ||H) and H? = (IRN , || · ||H−1)
H SPD
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Finite dimensional Banach spaces and IRN

I Other norms are possible on IRN :

I ‖u‖p = (
∑N

i=1(ui )
p)1/2 with 1 < p <∞

I ‖u‖1 = (
∑N

i=1 |ui |)
I ‖u‖∞ = maxi |ui |

I Hyper-norms on IRN of order k .

‖ · ‖~k : IRN → IRk

I ∀λ ∈ IR ‖λu‖~k = |λ|‖u‖~k
II ∀u, v ∈ IRN ‖u + v‖~k ≤ ‖u‖~k + ‖v‖~k component-wise

III ‖u‖~k = 0k ⇒ u = 0N
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Linear operator hyper-norm

I Let ‖u‖~k and ‖v‖~p two hyper-norms on IRn and A a linear
operator between (IRn, ‖ · ‖~k) and (IRn, ‖ · ‖~p)

I The norm is defined as

‖A ‖~k,~p = M ∈ IRk×p

M =

 ‖A11‖ . . . ‖A1k‖
... . . .

...
‖Ap1‖ . . . ‖Apk‖


I

IRn =

p⊕
j=1

Wj =
k⊕

i=1

Vi Wi ∩Wj = {0} Vi ∩Vj = {0}
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Rigal-Gaches (1967) theorem

∃∆A,∃δb such that:
(A + ∆A)ũ = (b + δb) and

‖∆A‖~k,~p ≤ S ∈ IRk×p, ‖δb‖~k ≤ t ∈ IRk

⇔

‖r‖~k ≤ S‖ũ‖~p + t
where r is defined by
r = Aũ− b
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Rigal-Gaches (1967) proof

A =

 A11 . . . A1k
... . . .

...
Ap1 . . . Apk

 r =

 r1
...

rk

 u =

 u1
...

up


∆Aij = − (S‖ũ‖~p)i

(S‖ũ‖~p + ‖t‖~k)i
ri (Zi

j)
T

where
(Zi

j) = (S‖ũ‖~p)izk

and zk is the dual vector of uk ( zTk ũk = (‖ũ‖~p)k ;

∆bi =
(‖t‖~k)i

(S‖ũ‖~p + ‖t‖~k)i
ri
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Backward error

We have the following equivalence in a general Hilbert (true also
for a Banach):

∃b ∈ BL(H),∃δL ∈ H? such that:
a(ũ, v) + b(ũ, v) = (L + δL)(v),
∀v ∈ H, and
‖b(·, ·)‖BL(H) ≤ α, ‖δL‖H? ≤ β

⇔

‖ρũ‖H? ≤ α‖ũ‖H + β
where ρũ ∈ H? is defined by
〈ρũ, v〉H?,H = a(ũ, v)− L(v),

∀v ∈ H

A., Noulard, and Russo (2001)
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Backward error (proof)

The proof will be given assuming that H is only a Banach space, thereby
showing that the theorem holds, even in a more general situation. For
this reason, in this proof, (and only here), we will use the notation of
duality pairs.
⇒: This is obvious.
⇐: We will build two perturbations of a and L, respectively b and δL,
such that :

a(ũ, v) + b(ũ, v) = L(v) + δL(v),∀v ∈ H.

We set:
∀u ∈ H, 〈ρu, v〉H?,H = b(u, v)− L(v),∀v ∈ H;

we have ρu ∈ H?.
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Backward error (proof)

We will denote by Ju ∈ (H?)? = H?? the element of the bi-dual of H,
which is associated to u in the canonic injection

J : H −→ V ??
I ⊂ H??

u 7−→ Ju

defined by 〈Ju, f 〉H??,H? = 〈f , u〉H?,H, ∀f ∈ H?. It is well-known that J is
a linear isometry (see e.g. H. BREZIS, Analyse Fonctionnelle, Théorie
et Applications, Masson, Paris, 1983.[III.4 p. 39]). We then have

‖Jũ‖H?? = ‖ũ‖H = sup‖f ‖H?≤1 〈Jũ, f 〉H??,H? =

sup‖f ‖H?≤1 〈f , ũ〉H?,H = 〈fũ, ũ〉H?,H ,

for a certain fũ ∈ H?. One must be aware of the fact that, here, we

cannot associate a vector v ∈ H to fũ, unless H is reflexive. In other

words we cannot find a v ∈ H such that ‖fũ‖H? = 〈fũ, v〉H?,H, because

‖fũ‖H? is a sup and not a max. It is a max if (and only if) H is reflexive.
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Backward error (proof)
Now, as has been done for the perturbation of a system of linear
equations, we define:

b(u, v) = − α

α‖ũ‖H + β
〈Ju, fũ〉H??,H 〈ρũ, v〉H?,H

and

δL(v) =
β

α‖ũ‖H + β
〈ρũ, v〉H?,H .

It is obvious that b is continuous and bilinear from H× H to IR, and
δL ∈ H?; an easy computation shows that

δL(v)− b(ũ, v) =(
β

α‖ũ‖H + β
+

α

α‖ũ‖H + β
〈Jũ, fũ〉H??,H?

)
〈ρũ, v〉H?,H = 〈ρũ, v〉H?,H

as required. Moreover, if we suppose that ‖ρũ‖H? ≤ α‖ũ‖H + β, then
we have:

‖b‖BL(H) ≤ α, ‖δL‖H? ≤ β.
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Backward error (Remark)

If H is a reflexive Banach space, we can give a more expressive form to
the perturbation term b. In fact, in this case, we can identify Ju and u
and obtain that

b(u, v) = − α
α‖ũ‖+β 〈Ju, fũ〉H??,H? 〈ρũ, v〉H?,H

= − α
α‖ũ‖+β 〈fũ, u〉H?,H 〈ρũ, v〉H?,H

= − α
α‖ũ‖+β 〈fũ ⊗ ρũ, (u, v)〉 ,

in analogy with the finite dimensional case.
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The symmetric case: conjugate gradient method

A symmetric positive definite

H = (IRN , || · ||A) and H? = (IRN , || · ||A−1)

At each step k the conjugate gradient method minimizes the energy
norm of the error δu(k) = u− u(k) on a Krylov space u(0) +Kk :

min
u(k)∈ u(0)+Kk

‖δu(k)‖2
A

‖δu(k)‖A = ‖ρu(k)‖H? = ‖̂r(k)‖A−1

r̂(k) = b− Au(k)

Arioli Numer. Math. (2003)
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The symmetric case: conjugate gradient method

u(k) = u(k−1) + αk−1p(k−1) αk−1 =
r(k−1)T r(k−1)

p(k−1)TAp(k−1)
,

r(k) = r(k−1) − αk−1Ap(k−1)

p(k) = r(k) + βk−1p(k−1), βk−1 =
r(k)T r(k)

r(k−1)T r(k−1)
,

where u(0) = 0 and r(0) = p(0) = b.

30 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

The symmetric case: conjugate gradient method

Taking into account that p(i)TAp(j) = 0, i 6= j we have

u =
N∑

j=1

αjp
(j) ‖u‖2

A =
N∑

j=1

αjr
(j)T r(j)
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The symmetric case: conjugate gradient method

Taking into account that p(i)TAp(j) = 0, i 6= j we have

u =
N∑

j=1

αjp
(j) ‖u‖2

A =
N∑

j=1

αjr
(j)T r(j)

uTAu =
∑N

j=1

∑N
i=1 αjαip

(j)TAp(i)

=
∑N

j=1 α
2
j p(j)TAp(j)

but αjp
(j)TAp(j) = r(j)T r(j).
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The symmetric case: stopping criteria

I Classic Criterion:

IF ‖Au(k) − b‖2 ≤
√
ε‖b‖2 THEN STOP ,

I New Criterion:

IF ‖Au(k) − b‖A−1 ≤ η‖b‖A−1 THEN STOP ,

with η < 1 an a-priori threshold fixed by the user. The choice
of η will depend on the properties of the problem that we
want to solve, and, in the practical cases, η can be frequently
much larger than ε , the roundoff unit of the computer finite
precision arithmetic.
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The symmetric case: stopping criteria cont.

‖Au(k) − b‖A−1 ?

‖b‖A−1 ?
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The symmetric case: stopping criteria cont.

‖Au(k) − b‖A−1

I Hestenes-Stiefel rule (1952) (see Strakoš and Tichý, 2002)
numerically stable

I Gauss quadrature rules (Golub and Meurant, 1997)
I Gauss equivalent to Hestenes-Stiefel rule (Strakoš and Tichý).

The Gauss quadrature does not require any a-priori knowledge
of the smallest and the biggest eigenvalues and computes a
lower bound of‖Au(k) − b‖A−1 .

I Gauss-Lobatto and Gauss-Radau. They compute lower and
upper bounds using the extremes eigenvalues of A.
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The symmetric case: Hestenes-Stiefel rule

During the conjugate gradient iterates, we compute the scalar αk

and the conjugate vectors p(k) (p(j)TAp(i) = 0, j 6= i) and the
residuals r(k). Thus,

u =
N∑
j=1

αjp
(j)

and

‖δu(k)‖2
A = ‖Au(k) − b‖2

A−1 = e2
A =

N∑
j=k+1

αj r
(j)T r(j)
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The symmetric case: Hestenes-Stiefel rule

Under the assumption that e
(k+d)
A << e

(k)
A , where the integer d

denotes a suitable delay, the Hestenes and Stiefel estimate ξk will
be

ξk =
k+d∑

j=k+1

αj r
(j)T r(j).

The choice of a value for d depends on preconditioner and
ill-conditioning.
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bT A−1b

From
r(k)Tv = 0, ∀v ∈ Kk ,

we prove

bTA−1b = uTAu ≥
k∑

j=1

αj r
(j)T r(j),

(the right-hand side will converge monotonically to ‖u‖2
A).

Therefore, we use the following stopping criterion

IF ξk ≤ η2
k∑

j=1

αj r
(j)T r(j) THEN STOP .
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Preconditioning

Let U a non singular matrix: the symmetric preconditioned system
is

U−TAU−1y = U−Tb
(
y = Uu

)
y(k) = y(k−1) + αk−1p̂(k−1) αk−1 =

r̂(k−1)T r̂(k−1)

p̂(k−1)TU−TAU−1p̂(k−1)
,

r̂(k) = r̂(k−1) − αk−1U−TAU−1p̂(k−1)

p̂(k) = r̂(k) + βk−1p̂(k−1), βk−1 =
r̂(k)T r̂(k)

r̂(k−1)T r̂(k−1)
,

where y(0) = 0 and r̂(0) = p̂(0) = b. In exact arithmetic we have

r̂(k) = U−Tb−U−TAU−1y(k).
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p̂(k) = r̂(k) + βk−1p̂(k−1), βk−1 =
r̂(k)T r̂(k)

r̂(k−1)T r̂(k−1)
,

where y(0) = 0 and r̂(0) = p̂(0) = b. In exact arithmetic we have

r̂(k) = U−Tb−U−TAU−1y(k).

Defining u(k) = U−1y(k) we have r̂(k) = U−T r(k). Then

‖̂r(k)‖2
(U−T AU−1)−1 = r̂(k)TUA−1UT r̂(k) = ‖r(k)‖2

A−1
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Preconditioning

The dual norm of the preconditioned residual is equal to the dual
norm of the original residual.
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PCG algorithm

M. Arioli

where y(0) = 0 and r̂ (0) = p̂(0) = U−T b. Moreover, in exact arithmetic,
we have that r̂ (k) = U−T b − U−T AU−1y(k), and, therefore, defining u(k) =
U−1y(k), we have that

r̂ (k) = U−T (b − Au(k)) = U−T r(k).

Then, we have that

∥r̂ (k)∥2
(U−T AU−1)−1 = r̂ (k)T UA−1UT r̂(k) = ∥r∥2

A−1 .

Finally, if we define p(k) = U−1p̂(k), and M = UT U , we obtain the variant
of the preconditioned conjugate gradient algorithm, which incorporates the
proposed stopping criterion with a suitable choice of d described in Figure 1.

Remark 2 The value of the exponent t in formula (10) can be higher than the
one suggested by (12) which depends on the regularity of the solution. This
is the case when super-convergence in the nodes of the mesh occurs and we
know that the values in the mesh nodes are very accurate [23,8].

Preconditioned Conjugate Gradient Algorithm (PCG)
Given an initial guess u(0), compute r(0) = b − Au(0), and solve Mz(0) = r(0). Set
p(0) = z(0), β0 = 0, α−1 = 1, ρ0 = bT u(0), and ξ0 = ∞.

k = 0
while = ξk > η2(ρ0 + r(0)T u(k)) do

k = k + 1;
χk = r(k−1)T z(k−1) ;

αk−1 = r(k−1)T z(k−1)

p(k−1)T Ap(k−1)
;

ψk = αk−1χk ;
u(k) = u(k−1) + αk−1p

(k−1);
r(k) = r(k−1) − αk−1Ap(k−1);
Solve Mz(k) = r(k);

βk = r(k)T z(k)

r(k−1)T z(k−1)
;

pk = zk + βkp
(k−1);

if = k > d then

ξk =
k∑

j=k−d+1

ψj ;

else
ξk = ξk−1;

endif
end while.

Fig. 1. Preconditioned Conjugate Gradient Algorithm (PCG)
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Continuous problem

a(u, v) =

∫
Ω
k(x)∇u · ∇vdx, ∀u, v ∈ H1

0 (Ω)

∀u, v ∈ H1
0 (Ω), ∃γ ∈ IR+ and ∃M ∈ IR+ such that

γ||u||21,Ω ≤ a(u, u)

a(u, v) ≤ M||u||1,Ω||v ||1,Ω ,

L(v) =
∫

Ω fvdx, L(v) ∈ H−1(Ω).

(P)

{
Find u ∈ H1

0 (Ω) such that
a(u, v) = L(v), ∀v ∈ H1

0 (Ω),
has a unique solution.
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Finite-element approximation

I Weak formulation


Find uh ∈ Hh such that
ah(uh, vh) = Lh(vh),
∀vh ∈ Hh,

Finite element methods choose Hh to be a space of functions vh
defined on a subdivision Ωh of Ω into simplices T of diameter hT ;

h denotes a piecewise constant function defined on Ωh via

h|T = hT .

I Existence and uniqueness: Hh ⊂ H = H1
0 (Ω).

I Error Estimate: ‖u − uh‖H ≤ C (h)
See Claes Johnson Numerical Solutions Of Partial Differential Equations By The Finite Element Method

2009
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Finite-element framework

Solve
Auh = b

given

sup
w∈IRN\{0}

sup
v∈IRN\{0}

wTAv

‖v‖H‖w‖H
≤ C1 (sup-sup)

inf
w∈IRN\{0}

sup
v∈IRN\{0}

wTAv

‖v‖H‖w‖H
≥ C2 (inf-sup)

Note: ‖vh‖Hh
= ‖v‖H.
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Example: Mesh

An example of mesh for the unitary square in IR2
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Finite-element framework

Finally, assuming h < 1 and t > 0, and choosing η = O(h), we
have

‖u − u
(k)
h ‖H ≤ C ∗(ht)‖u‖H + 2‖u − uh‖H ≤ C (h).

where

I u(x) is the exact solution of the variational problem,

I uh(x) is the exact solution of the approximate problem,

I u
(k)
h (x) =

∑N
i=1 u

(k)
h φi (x) is the approximate solution at step

k. (φi (x) are the basis functions)
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Test problems
Problem 1

k(x) =


1 x ∈ Ω \ {Ω1 ∪ Ω2 ∪ Ω3},
10−6 x ∈ Ω1,

10−4 x ∈ Ω2,

10−2 x ∈ Ω3.

Problem 2

k(x) =


1 x ∈ Ω \ {Ω1 ∪ Ω2 ∪ Ω3},
106 x ∈ Ω1,

104 x ∈ Ω2,

102 x ∈ Ω3.

M. Arioli

4 Numerical experiments

We generated two test problem classes using FEMLAB c⃝ under Matlab c⃝.
The first test problem class is define on a L-shape domain ! of R2. The
second test problem class is defined on the cube [0, 1] × [0, 1] × [0, 1]. In
both the classes, we chose boundary condition zero and, in the conjugate
gradient algorithm, the staring point u(0) = 0. Finally, in all the figures, the
estimate of the energy norm stops d steps before the final iteration because
of the choice of our stopping criterion, and the values in the legends of the
figures are:

– ||Au(k) − b||2/||b||2, the value of the residual at step k is computed using
A;

– ||δu||A/||u||A = ||u − u(k)||A/||u||A energy norm of the algebraic error;
– ||δu||a/||u||a = ||u − u(k)

h ||a/||u||a =
(
a(u, u) − bT u(k)

)1/2 error in
energy between the solution of (4) and current solution at step k.

4.1 L-shape test problems

In Fig. 2, we plot the geometry of the domain !. In problem (4), we choose
the functional L(v) =

∫
!

10vdx, ∀v ∈ H 1
0 (!), and in the bilinear form (1),

the function K(x) ∈ L∞(!) takes different values in each subdomain. In the
first test problem within this class we have:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω

Ω
3
 

Ω
1
 Ω

2
 

Γ 

Fig. 2. Geometry of the domain !

L(v) =
∫

Ω
10vdx, ∀v ∈ H1

0 (Ω)
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Preconditioners: estimates for κ(M−1A)

M Problem 1 Problem 2

I 3.6 108 1.8 1010

Jacobi 2.4 104 1.5 109

Inc. Cholesky(0) 7.2 103 4.3 108

η2 = 3.44.30510−5 and N = 29619.

The condition numbers of the preconditioned matrices M−1A for
the second problem are are still very high, and only the incomplete
Cholesky preconditioner with drop tolerance 10−2 is an effective
choice.
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Example: Problem 1

M. Arioli

and Problem 2. Therefore, by this approximate value E(u), we estimated the
error at step k:

||δu||a
||u||a

=
(

1 −
a(u(k)

h , u(k)
h )

E(u)

)1/2

≈ ||u(k)
h (x) − u(x)||a/||u(x)||a.

In the experiments, u(k) is the computed value at iteration k of the conjugate
gradient algorithm.

We compare the behaviour of

∥u − u(k)∥A

∥u∥A

= ||Au(k) − b||A−1

||b||A−1
,

with the corresponding estimate ξk/(bT u(0) + r(0)T u(k)), and the value of
∥Au(k)−b∥2/∥b∥2. Moreover, we plot the values at each step k of ||δu||a/||u||a .

The stopping criteria normally used are based on the values of ∥Au(k) −
b∥2/∥b∥2 [2]. In the practice, the conjugate gradient algorithm is stopped
when ∥Au(k) − b∥2/∥b∥2 ≤

√
ε.

4.1.1 Problem 1. In Fig. 3 and Fig. 4, respectively for the Jacobi and the
incomplete Cholesky decomposition preconditioners and for d = 5, we
present the history of convergence for Problem 1. During the initial
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Fig. 3. Behaviour of the norms of the residual for the Jacobi preconditioner in Problem 1

Behaviour of the norms of the residual for the Jacobi
preconditioner.
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Example: Problem 1
A stopping criterion for the conjugate gradient algorithm
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Fig. 4. Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
in Problem 1

iterations of the conjugate gradient algorithm, the ratio between ||u(k)||A and
||u||A is relatively large, as can be seen from Fig. 5 relatively to the Jacobi
preconditioner. Nevertheless, the ratio value quickly stabilises itself close to
1. We obtained similar plots for the incomplete Cholesky preconditioner.

4.1.2 Problem 2. Problem 2 is harder to solve. Both Jacobi and Incom-
plete Cholesky without fill-in failed for small values of d . In Fig. 6, we plot
the estimates relative to several values of d for the Jacobi preconditioner.
Only when d ≥ 90, the oscillations were smaller than η and, then, the algo-
rithm stopped with an accurate solution. In Fig. 7 and Fig. 8, we present the
convergence history for the cases relative to the incomplete Cholesky with
drop tolerance 10−2 and d = 10 and d = 20 respectively. In these cases,
the good preconditioner allows to choose a small value for d. Nonetheless,
the convergence is not particularly fast and we can see in Fig. 9 that the
ratio between the lower bound (19) and ||u||2A stagnates. Finally, in Fig. 10,
we forced the large value of d = 160 when using the incomplete Cholesky
preconditioner with drop tolerance 10−2. We point out that in this case the
∥Au(k) − b∥2/∥b∥2 does not go under the value

√
ε. Therefore, in this case,

the criterion based on the Euclidean norm of the residual gives a misleading
information about the iterative process.

Behaviour of the norms of the residual for the incomplete Cholesky
preconditioner.
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Example: Problem 2

M. Arioli
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Fig. 9. Ratio bT u(k)/||u||2A for the incomplete Cholesky preconditioner with drop toler-
ance 10−2 and d = 10 in Problem 2
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Example: Problem 2 M. Arioli
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Example: Problem 2

M. Arioli
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Lecture 3
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The non symmetric positive definite problem

I a(u, v) 6= a(v , u)

I A asymmetric but positive definite

I H = 1
2 (AT + A) SPD

I A = 1
2 (AT + A) + 1

2 (AT − A) = H−N

How to calculate ‖r(k)‖H−1?

I Solve preconditioned system

H−1/2AH−1/2û = H−1/2b

I ‖r̂(k)‖l2 = ‖r(k)‖H−1

I 3-term recurrence

I Approximate it from Krylov subspace information.

See A., Login, and Wathen
Numer. Math. (2004) (DOI) 10.1007/s00211-004-0568-z

A. and Loghin Electronic Transactions on Numerical Analysis. 29,

(2008).
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inf-sup framework

Solve

Au = f

given

sup
w∈IRn\{0}

sup
v∈IRn\{0}

wTAv

‖v‖H‖w‖H
≤ C1 (sup-sup)

inf
w∈IRn\{0}

sup
v∈IRn\{0}

wTAv

‖v‖H‖w‖H
≥ C2 (inf-sup)

Note: ‖vh‖Hh
= ‖v‖H defines the spd matrix H.
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3-term recurrence Algorithm

Kk = span
{

H−1f,H−1Nf, . . . ,
(
H−1N

)k−1
f
}
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3-term recurrence Algorithm

Kk = span
{

H−1f,H−1Nf, . . . ,
(
H−1N

)k−1
f
}

We compute the Lanczos vectors v(j) by a 3-term recurrence:

αjv
(j+1) = H−1Nv(j) − γjv(j) − βjv(j−1), j ≥ 0

with v(−1) = 0 and v(0) = H−1Nf The coefficients αj , γj , and βj
are chosen such that

v(i)THv(j) = δij

i.e. they are H orthogonal. Widlund SINUM,15, 1978
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3-term recurrence Algorithm

Kk = span
{

H−1f,H−1Nf, . . . ,
(
H−1N

)k−1
f
}

We compute the Lanczos vectors v(j) by a 3-term recurrence:

αjv
(j+1) = H−1Nv(j) − γjv(j) − βjv(j−1), j ≥ 0

with v(−1) = 0 and v(0) = H−1Nf The coefficients αj , γj , and βj
are chosen such that

v(i)THv(j) = δij

i.e. they are H orthogonal. Widlund SINUM,15, 1978 This is
possible only in this case for the peculiar preconditioning and the
Skew-Symmetry of N. In general, we cannot have 3-term recurrent
formulae for non-symmetric matrices (see Faber-Manteuffel
SINUM, 21, 1984)
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One crime

Replace
‖u − uh‖Hh

≤ C (h)

with
‖u − u

(k)
h ‖Hh

≤ C (h)

Sufficient condition

‖u − uh‖Hh
+ ‖uh − u

(k)
h ‖Hh

∼ O(C (h))

⇓
‖uh − u

(k)
h ‖Hh

∼ O(C (h))
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Stopping criteria

A general stopping criterion:

‖uh − u
(k)
h ‖Hh

= ‖u− u(k)‖H ≤ C (h)

Residual equation
r(k) = A(u− u(k))

⇓

‖u− u(k)‖H = ‖A−1r(k)‖H = ‖r(k)‖A−T HA−1 ≤ C (h)
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Stopping criteria

Lemma Let (inf-sup) hold. Then

‖r(k)‖A−T HA−1 ≤ C−1
2 ‖r(k)‖H−1 .

New stopping criterion

‖r(k)‖H−1 ≤ C2C (h)‖u(k)‖H.
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Examples

Elliptic problems in IR2 (Ω unit square)

−∇ · (a(x)∇u) + b(x) · ∇u + c(x)u = f in Ω

u = 0 on Γ.

where
(a)ij , (b)i , c ∈ L∞(Ω), i , j = 1, 2,

k2(x) |ξξξ|2 ≤ ξξξTa(x)ξξξ ≤ k1(x) |ξξξ|2 ,

c(x)− 1

2
∇ · b(x) ≥ 0 ∀x ∈ Ω.
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Examples

a(w , v) = (a · ∇w ,∇v) + (b · ∇w , v) + (cw , v),

is continuous and coercive with

C1 = ‖k1‖L∞(Ω) + ‖b‖L∞(Ω) + C (Ω)‖c‖L∞(Ω),

C2 = min
x∈Ω

k2(x),

wrt ‖ · ‖H = | · |H1
0 (Ω) := | · |1.
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Examples

Error estimate:

|u − uh|1 ≤ Chs−1‖u‖s , 1 ≤ s ≤ 2.

Issues

I What is h?

I How to approximate ‖u‖s?
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Numerical experiments

I Discretization:
linear elements on uniform & adaptive meshes

I Estimation of parameters

h ∼ ‖u
k‖M

‖uk‖l2
, ‖u‖s ∼ ‖Auk‖l2

63 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Numerical experiments

I Discretization:
linear elements on uniform & adaptive meshes

I Estimation of parameters

h ∼ ‖u
k‖M

‖uk‖l2
, ‖u‖s ∼ ‖Auk‖l2

63 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Numerical experiments

Stopping criteria and estimates

I Residual dual norm: ‖rk‖H−1

I Energy estimate ‖uk − uk−1‖H ≤ C2h2‖Auk‖l2
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Advection-diffusion problem

−ε∆u + b · ∇u = f in Ω

u = g on Γ.

b = (2y(1− x2),−2x(1− y 2)),

u(x , y) = x

(
1− e

y−1
ε

1− e−
2
ε

)
,

‖vh‖2
Hh

= ε|vh|21 +
∑
T∈T h

δT‖b · ∇vh‖2
0,T
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Advection-diffusion problem
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Advection-diffusion problem
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Advection-diffusion problem
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How to calculate ‖rk‖H−1?

I Solve preconditioned system

H−1/2AH−1/2û = H−1/2f

I ‖r̂k‖l2 = ‖rk‖H−1

I 3-term recurrence.

I Approximate it from Krylov subspace information.
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How to calculate ‖rk‖H−1?

I Concus & Golub, Widlund: 3-term recurrences for
nonsymmetric problems

I work in H-inner product
I do not minimize the residual norm.

Recall
Kk(r0,A) = span

{
r0,Ar0, . . . ,Ak−1r0

}
Arnoldi process

VT
k AVk = Hk

where VT
k Vk = Ik and Hk= Hessenberg.
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How to calculate ‖rk‖H−1?

Lemma Arnoldi applied to

Kk(r̂0, Â) ≡ Kk(H−1/2r0,H−1/2AH−1/2)

and Arnoldi in the H-inner product applied to

Kk(r̃0, Ã) ≡ Kk(H−1r0,H−1A)

produce the same Hk . Moreover,

(Hk)ij = 0, |i − j | > 1.
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CG Conclusions

FINAL MESSAGE: DO NOT ACCURATELY COMPUTE THE
SOLUTION OF AN INACCURATE PROBLEM
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Linear operators

Let M ∈ IRm×m and N ∈ IRn×n be symmetric positive definite
matrices, and let A ∈ IRm×n be a full rank matrix.

M = {v ∈ IRm; ‖u‖2
M = vTMv}, N = {q ∈ IRn; ‖q‖2

N = qTNq}

M? = {w ∈ IRm; ‖w‖2
M−1 = wTM−1w},

N? = {y ∈ IRn; ‖y‖2
N−1 = yTN−1y}
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M? = {w ∈ IRm; ‖w‖2
M−1 = wTM−1w},

N? = {y ∈ IRn; ‖y‖2
N−1 = yTN−1y}

〈v,Aq〉M,M? = vTAq, Aq ∈ L(M) ∀q ∈ N.

74 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Linear operators

Let M ∈ IRm×m and N ∈ IRn×n be symmetric positive definite
matrices, and let A ∈ IRm×n be a full rank matrix.

M = {v ∈ IRm; ‖u‖2
M = vTMv}, N = {q ∈ IRn; ‖q‖2

N = qTNq}

M? = {w ∈ IRm; ‖w‖2
M−1 = wTM−1w},

N? = {y ∈ IRn; ‖y‖2
N−1 = yTN−1y}

〈v,Aq〉M,M? = vTAq, Aq ∈ L(M) ∀q ∈ N.

The adjoint operator AF of A can be defined as

〈AFg, f〉N?,N = fTATg, ATg ∈ L(N) ∀g ∈M.
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Elliptic SVD

Given q ∈M and v ∈ N, the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “elliptic singular values and singular vectors’’ of A.
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Elliptic SVD

Given q ∈M and v ∈ N, the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “elliptic singular values and singular vectors’’ of A.
The saddle-point conditions are{

Aqi = σiMvi vTi Mvj = δij
ATvi = σiNqi qT

i Nqj = δij

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

75 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Elliptic SVD

Given q ∈M and v ∈ N, the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “elliptic singular values and singular vectors’’ of A.
The saddle-point conditions are{

Aqi = σiMvi vTi Mvj = δij
ATvi = σiNqi qT

i Nqj = δij

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

The elliptic singular values are the standard singular values of

Ã = M−1/2AN−1/2. The elliptic singular vectors qi and vi , i = 1, . . . , n

are the transformation by M−1/2 and N−1/2 respectively of the left and

right standard singular vector of Ã.
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Quadratic programming

The general problem

min
AT w=r

1

2
wTWw − gTw

where the matrix W is positive semidefinite and
ker(W) ∩ ker(AT ) = 0 can be reformulated by choosing

M = W + νAN−1AT

u = w −M−1g
b = r − ATM−1g.


as a projection problem

min
AT u=b

‖u‖2
M

If W is non singular then we can choose ν = 0.
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:[

M A
AT 0

] [
u
p

]
=

[
0
b

]
.
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Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m × n matrix are presented. All of
them can be theoretically applied to Ã and their generalization to
A is straightforward as shown by Bembow (1999). Here, we want
specifically to analyse one of the variants known as the
”Craig”-variant (see Paige Saunders (1982), Saunders
(1995,1997)).
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Generalized Golub-Kahan bidiagonalization

 AQ̃ = MṼ

[
B̃
0

]
ṼTMṼ = Im

AT Ṽ = NQ̃
[
B̃T ; 0

]
Q̃TNQ̃ = In

where

B̃ =



α̃1 0 0 · · · 0

β̃2 α̃2 0
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · β̃n−1 α̃n−1 0

0 · · · 0 β̃n α̃n

0 · · · 0 0 β̃n+1


.
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Generalized Golub-Kahan bidiagonalization

 AQ = MV

[
B
0

]
VTMV = Im

ATV = NQ
[
BT ; 0

]
QTNQ = In

where

B =


α1 β1 0 · · · 0

0 α2 β2
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · 0 αn−1 βn−1

0 · · · 0 0 αn

 .
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Algorithm

The augmented system that gives the optimality conditions for
minAT u=b ‖u‖2

M [
M A
AT 0

] [
u
p

]
=

[
0
b

]
can be transformed by the change of variables{

u = Vz
p = Qy
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Algorithm

 In 0 B
0 Im−n 0

BT 0 0

 z1

z2

y

 =

 0
0

QTb

 .
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Algorithm

[
In B

BT 0

] [
z1

y

]
=

[
0

QTb

]
.
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Algorithm

[
In B

BT 0

] [
z1

y

]
=

[
0

QTb

]
.

QTb = e1‖b‖N

the value of z1 will correspond to the first column of the inverse of
B multiplied by ‖b‖N.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.

Finally, knowing q1 and v1 we can start the recursive relations

gi+1 = N−1
(
ATvi − αiNqi

)
βi+1 = gTNg

qi+1 = g
√
βi+1

w = M−1 (Aqi+1 − βi+1Mvi )
αi+1 = wTMw
vi+1 = w/

√
αi+1.
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

u(k) = Vkzk =
k∑

j=1

ζjvj .
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

u(k) = Vkzk =
k∑

j=1

ζjvj .

The entries ζj of zk can be easily computed recursively starting
with

ζ1 = −‖b‖N

α1

as

ζi+1 = − βi
αi+1

ζi i = 1, . . . , n
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

Following an observation made by Paige and Saunders, we can
easily transform the previous relation into a recursive one where
only one extra vector is required.
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

From p(k) = −QkB−1
k zk = −

(
B−Tk QT

k

)T
zk and Dk = B−Tk QT

k

di =
qi − βidi−1

αi
i = 1, . . . , n

(
d0 = 0

)
where dj are the columns of D.
Starting with p(1) = −ζ1d1 and u(1) = ζ1v1

u(i+1) = u(i) + ζi+1vi+1

p(i+1) = p(i) − ζi+1di+1

}
i = 1, . . . , n
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.

‖p− p(k)‖N =
∣∣∣∣∣∣QB−1

(
z−

[
zk
0

]) ∣∣∣∣∣∣
N
≤ ‖e

(k)‖M

σn
.
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Error bound

Lower bound We can estimate ‖e(k)‖2
M by the lower bound

ξ2
k,d =

k+d+1∑
j=k+1

ζ2
j < ‖e(k)‖2

M.

Given a threshold τ < 1 and an integer d , we can
stop the iterations when

ξ2
k,d ≤ τ

k+d+1∑
j=1

ζ2
j < τ‖u‖2

M.

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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inf-sup

Let H and P be two Hilbert spaces, and H? and P? the
corresponding dual spaces. Let

a(u, v) : H× H→ IR b(u, q) : H×P→ IR
|a(u, v)| ≤ ‖a‖ ‖u‖H ‖u‖H ∀u ∈ H,∀v ∈ H
|b(u, q)| ≤ ‖b‖ ‖v‖H ‖q‖P ∀u ∈ H, ∀q ∈ P

be continuous bilinear forms with ‖a‖ and ‖b‖ the corresponding
norms. Given f ∈ H? and g ∈ P?, we seek the solutions u ∈ H and
p ∈ P of the system

a(u, v) + b(v , p) = 〈f , v〉H?,H ∀v ∈ H
b(u, q) = 〈g , q〉P?,P ∀q ∈ P.

(2)
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inf-sup
We can introduce the operators M , A and its adjoint A F

M : H→ H?, 〈M u, v〉H?×H = a(u, v) ∀u ∈ H,∀v ∈ H
A F : H→ P?, 〈A Fu, q〉P?×P = b(u, q) ∀u ∈ H,∀q ∈ P
A : P→ H?, 〈v ,A p〉H×H? = b(v , p) ∀v ∈ H, ∀p ∈ P

and we have

〈A Fu, q〉P?×P = 〈u,A q〉H×H? = b(u, q).

In order to make the following discussion simpler, we assume that
a(u, v) is symmetric and coercive on H

0 < χ1‖u‖H ≤ a(u, u).

However, Brezzi:1991 the coercivity on the kernel of A F,
Ker(A F) is sufficient. We will also assume that ∃χ0 > 0 such
that

sup
v∈H

b(v , q)

‖v‖H
≥ χ0‖q‖P\Ker(A ) = χ0

[
inf

q0∈Ker(A )
‖q + q0‖P

]
.
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inf-sup

Under these hypotheses, and for any f ∈ H? and g ∈ Im(A F)
then there exists (u, p) solution of saddle problem: u is unique and
p is definite up to an element of Ker(A ).
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inf-sup and Mixed finite-element method

Let now Hh ↪→ H and Ph ↪→ P be two finite dimensional subspaces
of H and P. As for the problem (2), we can introduce the
operators Ah : Ph → H?h and Mh;Hh → H?h. We also assume that

Ker(Ah) ⊂ Ker(A )

supvh∈Hh

b(vh, qh)

‖vh‖H
≥ χn‖qh‖P\Ker(Ah)

χn ≥ χ0 > 0.
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inf-sup and Mixed finite-element method

Under the hypotheses of inf-sup, we have that
∃(uh, ph) ∈ Hh ×Ph solution of

a(uh, vh) + b(vh, ph) = 〈f , vh〉H?h ,Hh
∀vh ∈ Hh

b(uh, qh) = 〈g , qh〉P?h ,Ph
∀qh ∈ Ph.

and

‖u − uh‖H + ‖p − ph‖P\Ker(A) ≤

κ

(
inf

vh∈Hh

‖u − vh‖H + inf
qh∈Ph

‖p − qh‖P
)
,

where κ = κ(‖a‖, ‖b‖, χ0, χ1) is independent of h.
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inf-sup and Mixed finite-element method

Let {φi}i=1,...,m be a basis for Hh and {ψj}j=1,...,n be a basis for
Ph. Then, the matrices M and N are the Grammian matrices of
the operators M and A . In order to use the latter theory, we need
to weaken the hypothesis, made in the introduction, that A be full
rank. In this case, we have that

I s elliptic singular values will be zero;

I however, the G-K bidiagonalization method will still work and,
if Aq1 6= 0, it will compute a matrix B of rank less than or
equal to n − s.
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inf-sup and Mixed finite-element method

On the basis of the latter observations, the error ‖e(k)‖M can be
still computed. Finally, we point out that for h ↓ 0 the elliptic
singular values of all A ∈ IRmh×nh will be bounded with upper and
lower bounds independent of h, i.e.

χ0 ≤ σnh ≤ · · · ≤ σ1 ≤ ‖a‖.
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inf-sup and Mixed finite-element method

Theorem
Under previous hypotheses, and denoting by u∗ one of the iterates
of Algorithm Craig for which ‖e(k)‖M < τ , we have

‖u − u∗‖H + ‖p − p∗‖P\Ker(A ) ≤

κ̌

(
inf

vh∈Hh

‖u − vh‖H + inf
qh∈Ph

‖p − qh‖P + τ

)
,(2)

where u∗ =
∑nh

i=1 φiu
∗
i ∈ Hh, p∗ =

∑nh
j=1 φip

∗
j ∈ Ph and κ̌ a

constant independent of h.
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Two examples

Stokes
The Stokes problems have been generated using the software
provided by ifiss3.0 package (Elman, Ramage, and Silvester). We
use the default geometry of “Step case” and the Q2-Q1
approximation described in ifiss3.0 manual and in Elman,
Silvester, and Wathen (2005).

name m n nnz(M) nnz(A)

Step1 418 61 2126 1603
Step2 1538 209 10190 7140
Step3 5890 769 44236 30483
Step4 23042 2945 184158 126799
Step5 91138 11521 751256 518897

(nnz(M) is only for the symmetric part)
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Two examples

name # Iter.s ‖e(k)‖2 ‖ATu(k) − b‖2 ‖p− p(k)‖2 κ(B)

Step1 30 6.8e-16 5.1e-16 1.1e-13 7.6
Step2 32 5.4e-14 5.4e-14 5.0e-12 7.7
Step3 34 3.8e-14 2.7e-14 1.0e-11 7.8
Step4 34 5.0e-13 1.3e-13 1.4e-10 7.8
Step5 35 1.8e-13 3.1e-14 1.7e-10 7.8

Stokes (Step) problems results (d = 5, τ = 10−8).
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Two examples
Poisson with mixed b.c. Problems The Poisson problem is casted
in its dual form as a Darcy’s problem:

Find w ∈ H = {~q | ~q ∈ Hdiv (Ω), ~q · n = 0 on ∂N(Ω)} , u ∈ L2(Ω) s.t.∫
Ω ~w · ~q +

∫
Ω) div(~q)u =

∫
∂D(Ω) uD~q · n ∀~q ∈ H∫

Ω div(~w)v =
∫

Ω fv ∀v ∈ L2(Ω).

We approximated the spaces H and L2(Ω) by RT0 and by
piecewise constant functions respectively The matrix N is the mass
matrix for the piecewise constant functions and it is a diagonal
matrix with diagonal entries equal to the area of the corresponding
triangle. The matrix M has been chosen such that each
approximation Hh of H is

Hh =
{

q ∈ IRm ‖q‖2
Hh

= qTMq
}
.

Therefore, denoting by W the mass matrix for Hh, we have

M = W + AN−1AT .
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Two examples

Poisson with mixed b.c. Problems

h = 2−k m n nnz(M) nnz(A)

2−6 12288 8192 36608 24448
2−7 49152 32768 146944 98048
2−8 196608 131072 588800 392704
2−9 786432 524288 2357248 1571840

(nnz(M) is only for the symmetric part)

With the chosen boundary conditions, it is easy to verify that the
continuous solution u is u(x , y) = x .
We point out that the pattern of W is structurally equal to the
pattern AN−1AT .

87 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Two examples

name # Iter.s ‖e(k)‖2 ‖ATu(k) − b‖2 ‖p− p(k)‖2 κ(B)

h = 2−6 10 2.8e-12 2.9e-16 4.1e-11 1.05
h = 2−7 10 9.7e-12 3.0e-16 2.6e-10 1.05
h = 2−8 10 2.5e-11 3.0e-16 7.9e-10 1.05
h = 2−9 10 2.9e-10 2.8e-16 1.3e-08 1.05

Poisson with mixed b.c. data and RT0 problem results (d = 5,
τ = 10−8).
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Lecture on inf-sup
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inf-sup

Let H1 and H2 be two Hilbert space, and H?1 and H?2 the
corresponding dual spaces. Let

a(u, v) : H1 × H2 → IR

supu∈H1
supv∈H2

|a(u, v)|
‖u‖H1 ‖v‖H2

≤ C1 ∀u,∈ H1, ∀v ∈ H2

infu∈H1 supv∈H2

|a(u, v)|
‖u‖H1 ‖v‖H2

≥ C2 ∀u ∈ H1,∀v ∈ H2

be continuous bilinear forms with ‖a‖ the corresponding norms.
Given f ∈ H?2 , we seek the solutions u ∈ H1 of

a(u, v) = 〈f , v〉H?2 ,H2 ∀v ∈ H2 (3)
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inf-sup

Theorem. The inf-sup condition is equivalent to

∀v ∈ H2∃u ∈ H1 s.t.
a(u, v) ≥ c1||v ||2H2

and ||u||H1 ≤ c2||v ||H2 .

IF H1 = H2 THEN the inf-sup is the coercivity condition
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inf-sup

Solve ( we assume that we have approximate the Hilbert spaces
with finite dimensional ones)

Au = f

given

max
w∈IRn\{0}

max
v∈IRn\{0}

wTAv

‖v‖H‖w‖H
≤ C1 (sup-sup)

min
w∈IRn\{0}

max
v∈IRn\{0}

wTAv

‖v‖H‖w‖H
≥ C2 (inf-sup)

Note: ‖vh‖Hh
= ‖v‖H defines the spd matrix H.
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inf-sup

Let H and P be two Hilbert spaces, and H? and P? the
corresponding dual spaces. Let

a(u, v) : H× H→ IR b(u, q) : H×P→ IR
|a(u, v)| ≤ ‖a‖ ‖u‖H ‖v‖H ∀u ∈ H,∀v ∈ H
|b(u, q)| ≤ ‖b‖ ‖u‖H ‖q‖P ∀u ∈ H,∀q ∈ P

be continuous bilinear forms with ‖a‖ and ‖b‖ the corresponding
norms. Given f ∈ H? and g ∈ P?, we seek the solutions u ∈ H and
p ∈ P of the system

a(u, v) + b(v , p) = 〈f , v〉H?,H ∀v ∈ H
b(u, q) = 〈g , q〉P?,P ∀q ∈ P.

(3)
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inf-sup
We can introduce the operators M , A and its adjoint A F

M : H→ H?, 〈M u, v〉H?×H = a(u, v) ∀u ∈ H,∀v ∈ H
A F : H→ P?, 〈A Fu, q〉P?×P = b(u, q) ∀u ∈ H,∀q ∈ P
A : P→ H?, 〈v ,A p〉H×H? = b(v , p) ∀v ∈ H, ∀p ∈ P

and we have

〈A Fu, q〉P?×P = 〈u,A q〉H×H? = b(u, q).

In order to make the following discussion simpler, we assume that
a(u, v) is symmetric and coercive on H

0 < χ1‖u‖H ≤ a(u, u).

However, Brezzi:1991 the coercivity on the kernel of A F,
Ker(A F) is sufficient. We will also assume that ∃χ0 > 0 such
that

sup
v∈H

b(v , q)

‖v‖H
≥ χ0‖q‖P\Ker(A ) = χ0

[
inf

q0∈Ker(A )
‖q + q0‖P

]
.
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inf-sup

Under these hypotheses, and for any f ∈ H? and g ∈ Im(A F)
then there exists (u, p) solution of saddle problem: u is unique and
p is definite up to an element of Ker(A ).
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inf-sup

Remember that

〈A Fu, q〉P?×P and 〈v ,A p〉H×H? = b(v , p)

Then, we solve [
M A
A F

] [
u
p

]
=

[
f
g

]
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inf-sup and Mixed finite-element method

Let now Hh ↪→ H and Ph ↪→ P be two finite dimensional subspaces
of H and P. As for the problem (2), we can introduce the
operators Ah : Ph → H?h and Mh;Hh → H?h. We also assume that

Ker(Ah) ⊂ Ker(A )

supvh∈Hh

b(vh, qh)

‖vh‖Hh

≥ χn‖qh‖Ph\Ker(Ah)

χn ≥ χ0 > 0.
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inf-sup and Mixed finite-element method

Under the hypotheses of inf-sup, we have that
∃(uh, ph) ∈ Hh ×Ph solution of

a(uh, vh) + b(vh, ph) = 〈f , vh〉H?h ,Hh
∀vh ∈ Hh

b(uh, qh) = 〈g , qh〉P?h ,Ph
∀qh ∈ Ph.

and

‖u − uh‖H + ‖p − ph‖P\Ker(A) ≤

κ

(
inf

vh∈Hh

‖u − vh‖H + inf
qh∈Ph

‖p − qh‖P
)
,

where κ = κ(‖a‖, ‖b‖, χ0, χ1) is independent of h.
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inf-sup and Mixed finite-element method

Let {φi}i=1,...,m be a basis for Hh and {ψj}j=1,...,n be a basis for
Ph. Then, the matrices M and N are the Grammian matrices of
the operators M and A . In order to use the latter theory, we need
to weaken the hypothesis, made in the introduction, that A be full
rank. In this case, we have that

I s elliptic singular values will be zero;

I however, the G-K bidiagonalization method will still work and,
if Aq1 6= 0, it will compute a matrix B of rank less than or
equal to n − s.
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inf-sup and Mixed finite-element method

On the basis of the latter observations, the error ‖e(k)‖M can be
still computed. Finally, we point out that for h ↓ 0 the elliptic
singular values of all A ∈ IRmh×nh will be bounded with upper and
lower bounds independent of h, i.e.

χ0 ≤ σnh ≤ · · · ≤ σ1 ≤ ‖a‖.
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Generalized SVD

Given q ∈M and v ∈ N, the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “elliptic singular values and singular vectors’’ of A.
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Generalized SVD

Given q ∈M and v ∈ N, the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “elliptic singular values and singular vectors’’ of A.
The saddle-point conditions are{

Aqi = σiMvi vTi Mvj = δij
ATvi = σiNqi qT

i Nqj = δij

σ1 ≥ σ2 ≥ · · · ≥ σn > 0
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The saddle-point conditions are{

Aqi = σiMvi vTi Mvj = δij
ATvi = σiNqi qT

i Nqj = δij

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

The elliptic singular values are the standard singular values of

Ã = M−1/2AN−1/2. The elliptic singular vectors qi and vi , i = 1, . . . , n

are the transformation by M−1/2 and N−1/2 respectively of the left and

right standard singular vector of Ã.
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Quadratic programming

The general problem

min
AT w=r

1

2
wTWw − gTw

where the matrix W is positive semidefinite and
ker(W) ∩ ker(AT ) = 0 can be reformulated by choosing

M = W + νAN−1AT

u = w −M−1g
b = r − ATM−1g.


as a projection problem

min
AT u=b

‖u‖2
M

If W is non singular then we can choose ν = 0.
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:[

M A
AT 0

] [
u
p

]
=

[
0
b

]
.
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Lecture on Golub-Kahan
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Elliptic SVD

Given q ∈M and v ∈ N, the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “ELLIPTIC singular values and singular vectors’’ of A.
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Elliptic SVD
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Quadratic programming

The general problem

min
AT w=r

1

2
wTWw − gTw

where the matrix W is positive semidefinite and
ker(W) ∩ ker(AT ) = 0 can be reformulated by choosing

M = W + νAN−1AT

u = w −M−1g
b = r − ATM−1g.


as a projection problem

min
AT u=b

‖u‖2
M

If W is non singular then we can choose ν = 0.
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:[

M A
AT 0

] [
u
p

]
=

[
0
b

]
.
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Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m × n matrix are presented. All of
them can be theoretically applied to Ã and their generalization to
A is straightforward as shown by Bembow (1999). Here, we want
specifically to analyse one of the variants known as the
”Craig”-variant (see Paige Saunders (1982), Saunders
(1995,1997)).

99 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Generalized Golub-Kahan bidiagonalization

 AQ̃ = MṼ

[
B̃
0

]
ṼTMṼ = Im

AT Ṽ = NQ̃
[
B̃T ; 0

]
Q̃TNQ̃ = In

where

B̃ =



α̃1 0 0 · · · 0

β̃2 α̃2 0
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · β̃n−1 α̃n−1 0

0 · · · 0 β̃n α̃n

0 · · · 0 0 β̃n+1


.
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Generalized Golub-Kahan bidiagonalization

 AQ = MV

[
B
0

]
VTMV = Im

ATV = NQ
[
BT ; 0

]
QTNQ = In

where

B =


α1 β1 0 · · · 0

0 α2 β2
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · 0 αn−1 βn−1

0 · · · 0 0 αn

 .
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Algorithm

The augmented system that gives the optimality conditions for
minAT u=b ‖u‖2

M [
M A
AT 0

] [
u
p

]
=

[
0
b

]
can be transformed by the change of variables{

u = Vz
p = Qy
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Algorithm

 In 0 B
0 Im−n 0

BT 0 0

 z1

z2

y

 =

 0
0

QTb

 .
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Algorithm

[
In B

BT 0

] [
z1

y

]
=

[
0

QTb

]
.
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Algorithm

[
In B

BT 0

] [
z1

y

]
=

[
0

QTb

]
.

QTb = e1‖b‖N

the value of z1 will correspond to the first column of the inverse of
B multiplied by ‖b‖N.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.

Finally, knowing q1 and v1 we can start the recursive relations

gi+1 = N−1
(
ATvi − αiNqi

)
βi+1 = gTNg

qi+1 = g
√
βi+1

w = M−1 (Aqi+1 − βi+1Mvi )
αi+1 = wTMw
vi+1 = w/

√
αi+1.
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

u(k) = Vkzk =
k∑

j=1

ζjvj .
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

u(k) = Vkzk =
k∑

j=1

ζjvj .

The entries ζj of zk can be easily computed recursively starting
with

ζ1 = −‖b‖N

α1

as

ζi+1 = − βi
αi+1

ζi i = 1, . . . , n
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

Following an observation made by Paige and Saunders, we can
easily transform the previous relation into a recursive one where
only one extra vector is required.

103 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

From p(k) = −QkB−1
k zk = −

(
B−Tk QT

k

)T
zk and Dk = B−Tk QT

k

di =
qi − βidi−1

αi
i = 1, . . . , n

(
d0 = 0

)
where dj are the columns of D.
Starting with p(1) = −ζ1d1 and u(1) = ζ1v1

u(i+1) = u(i) + ζi+1vi+1

p(i+1) = p(i) − ζi+1di+1

}
i = 1, . . . , n
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.

‖p− p(k)‖N =
∣∣∣∣∣∣QB−1

(
z−

[
zk
0

]) ∣∣∣∣∣∣
N
≤ ‖e

(k)‖M

σn
.
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Error bound

Lower bound We can estimate ‖e(k)‖2
M by the lower bound

ξ2
k,d =

k+d+1∑
j=k+1

ζ2
j < ‖e(k)‖2

M.

Given a threshold τ < 1 and an integer d , we can
stop the iterations when

ξ2
k,d ≤ τ

k+d+1∑
j=1

ζ2
j < τ‖u‖2

M.

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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Error bound

Theorem
Under previous hypotheses, and denoting by u∗ one of the iterates
of Algorithm Craig for which ‖e(k)‖M < τ , we have

‖u − u∗‖H + ‖p − p∗‖P\Ker(A ) ≤

κ̌

(
inf

vh∈Hh

‖u − vh‖H + inf
qh∈Ph

‖p − qh‖P + τ

)
,(3)

where u∗ =
∑nh

i=1 φiu
∗
i ∈ Hh, p∗ =

∑nh
j=1 φip

∗
j ∈ Ph and κ̌ a

constant independent of h.
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Lecture on SQD
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Symmetric Quasi-Definite Systems

[
M A
AT −N

] [
x
y

]
=

[
f
g

]
where M = MT � 0, N = NT � 0.

I Interior-point methods for LP, QP, NLP, SOCP, SDP, . . .

I Regularized/stabilized PDE problems

I Regularized least squares

I How to best take advantage of the structure?
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Main Property

Theorem (Vanderbei, 1995)
If K is SQD, it is strongly factorizable, i.e., for any permutation
matrix P, there exists a unit lower triangular L and a diagonal D
such that PTKP = LDLT .

I Cholesky-factorizable

I Used to speed up factorization in regularized least-squares
(Saunders) and interior-point methods (Friedlander and O.)

I Stability analysis by Gill, Saunders, Shinnerl (1996).
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Centered preconditioning

[
M−

1
2

N−
1
2

] [
M A
AT −N

] [
M−

1
2

N−
1
2

] [
x̂
ŷ

]
=

[
M−

1
2 f

N−
1
2 g

]

which is equivalent to

Ĉ︷ ︸︸ ︷[
Im M−

1
2 AN−

1
2

N−
1
2 ATM−

1
2 −In

][
x̂
ŷ

]
=

[
M−

1
2 f

N−
1
2 g

]

Theorem (Saunders (1995))

Suppose Ã = M−
1
2 AN−

1
2 has rank p ≤ m with nonzero singular

values σ1, . . . , σp. The eigenvalues of Ĉ are +1, −1 and
±√1 + σk , k = 1, . . . , p.
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Symmetric spectrum and Iterative methods

A symmetric matrix with a symmetric spectrum can be transform
preserving the symmetry of the spectrum in a SQD one.
Moreover, Fischer (Theorem 6.9.9 in “Polynomial based iteration
methods for symmetric linear systems”) Freund (1983), Freund
Golub Nachtigal (1992), and Ramage Silvester Wathen (1995) give
different poofs that MINRES and CG perform redundant iterations.
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Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

I MINRES

I SYMMLQ

I (F)GMRES??

I QMRS????

Fact: . . . none exploits the SQD structure and they are doing
redundant iterations
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Related Problems: an example

[
M A
AT −N

] [
x
y

]
=

[
b
0

]
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Related Problems: an example

[
M A
AT −N

] [
x
y

]
=

[
b
0

]
are the optimality conditions of

min
y∈IRm

1
2

∥∥∥∥[A
I

]
y −

[
b
0

]∥∥∥∥2

E−1
+

≡ min
y∈IRm

1
2

∥∥∥∥∥
[

M−
1
2 0

0 N
1
2

]([
A
I

]
y −

[
b
0

])∥∥∥∥∥
2

2
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1
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I

]
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[
b
0
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E−1
+

≡ min
y∈IRm

1
2

∥∥∥∥∥
[

M−
1
2 0

0 N
1
2

]([
A
I

]
y −

[
b
0

])∥∥∥∥∥
2

2

or of

minimize
x,y

1
2 (‖x‖2

M + ‖y‖2
N) subject to Mx + Ay = b.
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Some properties of SQD matrices

Let us denote the Cholesky factors of M and N by R and U (upper
triangular matrices).

H =

[
M

N

]
=

[
RTR

UTU

]
= R̃T R̃

We observe that

C =

[
M A
AT −N

]
=

[
RT 0
0 UT

] [
Im Ã

ÃT −In

] [
R 0
0 U

]
= R̃T C̃R̃,
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Let us denote the Cholesky factors of M and N by R and U (upper
triangular matrices).

H =

[
M

N

]
=

[
RTR

UTU

]
= R̃T R̃

We observe that

C =

[
M A
AT −N

]
=

[
RT 0
0 UT

] [
Im Ã

ÃT −In

] [
R 0
0 U

]
= R̃T C̃R̃,

H−1C = R̃−1C̃R̃
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Some properties of SQD matrices

By direct computation it is easy to prove that

C̃2 =

[
Im + ÃÃT

In + ÃT Ã

]
=

[
D̃1

D̃2

]
= D̃.

115 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Some properties of SQD matrices

By direct computation it is easy to prove that

C̃2 =

[
Im + ÃÃT

In + ÃT Ã

]
=

[
D̃1

D̃2

]
= D̃.

C̃−1 = D̃−1C̃ = C̃D̃−1;

C̃D̃ = C̃3 = D̃C̃;

CH−1C = R̃T D̃R̃ = D =

[
M + AN−1AT

N + ATM−1A

]
.

115 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Some properties of SQD matrices
By direct computation it is easy to prove that

C̃2 =

[
Im + ÃÃT
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M + AN−1AT

N + ATM−1A

]
.

(
H−1C

)2
= R̃−1C̃2R̃ = R̃−1D̃R̃ = H−1D,(

H−1C
)3

= R̃−1C̃3R̃ = H−1CH−1D = H−1DH−1C

C−1 = D−1CH−1 = H−1CD−1.

115 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Some properties of SQD matrices

D̃ and C̃ commute.
Both matrices can be simultaneously diagonalized by the
generalized eigenvalues of

Cz = λjHz,

where the λj , j = 1, . . . , p = rank(Ā) are the same eigenvalues of

Ĉ
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Krylov subspaces

Hereafter we will denote by

K̃i (C̃, z) = Range
{

z, C̃z, C̃2z, . . . , C̃i−1z, C̃iz
}

the Krylov subspace generated by C̃ and a vector z. We point out
that K̃i (C̃, z) are also the Krylov subspaces used to define the
Lanczos algorithm applied to C symmetrically preconditioned by R̃.

K̃i (H−1C,w) = R̃−1K̃i (C̃, z), where w = R̃z.
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Krylov subspaces

C̃2k = D̃k

C̃2k+1 = C̃D̃k = D̃k C̃

}
.

Therefore,

K̃k(C̃, z) = K̃bk/2c(D̃, z) + K̃dk/2e−1(D̃, C̃z)

= K̃bk/2c(D̃, z) + C̃K̃dk/2e−1(D̃, z).
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Krylov subspaces

Finally, denoting by D̃1 and D̃2 the diagonal blocks of D̃, i.e. we
have:

K̃i (D̃,

[
z1

z2

]
) =

[
Ki (D̃1, z1)

0

]
⊕
[

0

Ki (D̃2, z2)

]
and

C̃K̃i (D̃,

[
z1

z2

]
) =

[
Ki (D̃1, z1)

ÃTKi (D̃1, z1)

]
⊕
[

ÃKi (D̃2, z2)

−Ki (D̃2, z2)

]

=

[
Ki (D̃1, z1)

Ki (D̃2, ÃTz1)

]
⊕
[

Ki (D̃1, Ãz2)

−Ki (D̃2, z2)

]
.
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Generalized Golub-Kahan bidiagonalization

TWO VARIANTS
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Generalized Golub-Kahan bidiagonalization

 AQ̃ = MṼ

[
B̃
0

]
ṼTMṼ = Im

AT Ṽ = NQ̃
[
B̃T ; 0

]
Q̃TNQ̃ = In

where

B̃ =



α̃1 0 0 · · · 0

β̃2 α̃2 0
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · β̃n−1 α̃n−1 0

0 · · · 0 β̃n α̃n

0 · · · 0 0 β̃n+1


.
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Generalized Golub-Kahan bidiagonalization

 AQ = MV

[
B
0

]
VTMV = Im

ATV = NQ
[
BT ; 0

]
QTNQ = In

where

B =


α1 β1 0 · · · 0

0 α2 β2
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · 0 αn−1 βn−1

0 · · · 0 0 αn

 .
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Generalized Least Squares

Normal equations: (ATM−1A + N)y = ATM−1b.

At k-th iteration, seek y ≈ yk := Ṽk ȳk :

(B̃T
k B̃k + I)ȳk = B̃T

k β1e1

i.e.:

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

or: [
I B̃k

B̃T
k −I

] [
x̄k
ȳk

]
=

[
β1e1

0

]
.
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Generalized LSQR
Solve

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

by specialized Givens Rotations (Eliminate I first and R̃k will be
upper bidiagonal)

min
ȳ∈IRk

1
2

∥∥∥∥[R̃k

0

]
ȳ −

[
φk
0

]∥∥∥∥2

2

.

As in Paige-Saunders ’82 we can build recursive expressions of yk

yk+1 = yk + dkφk

(
Dk = Ṽk R̃−1

k

)
and we have that

||ȳ||2N+AT M−1A =
m∑
j=1

φ2
j and ||ȳ − yk ||2N+AT M−1A =

m∑
j=k+1

φ2
j
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Error bound

Lower bound We can estimate ||ȳ − yk ||2N+AT M−1A
by the lower

bound

ξ2
k,d =

k+d+1∑
j=k+1

φ2
j < ||ȳ − yk ||2N+AT M−1A.

and ||ȳ||2
N+AT M−1A

by the lower bound
∑k

j=1 φ
2
j .

Given a threshold τ < 1 and an integer d , we can
stop the iterations when

ξ2
k,d ≤ τ

k+d+1∑
j=1

φ2
j < τ

k∑
j=1

φ2
j < τ ||ȳ||2N+AT M−1A.

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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Generalized CRAIG

min
y,x

1
2 (‖y‖2

N + ‖x‖2
M) s.t. Ay + Mx = b.

At step k of GK bidiagonalization, we seek

x ≈ xk := Uk x̄k , and y ≈ yk := Vk ȳk .

min
ȳ,x̄

1
2 (‖ȳ‖2 + ‖x̄‖2) s.t. Bk ȳk + x̄k = β1e1

or:

min
ȳ∈IRk

1
2

∥∥∥∥[Bk

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

.
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem[
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem[
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
Following Saunders (1995) and Paige (1974), we compute an LQ

factorization to the k-by-2k matrix
[
Bk Ik

]
by applying 2k − 1

Givens rotations that zero out the identity block.
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem[
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
[
Bk Ik

]
QT

k =
[
B̂k 0

]
QT

k Qk = I

where

B̂k :=


α̂1

β̂2 α̂2

. . .
. . .

β̂k α̂k

 .
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Generalized CRAIG

β1e1 = Bk ȳk + x̄k =
[
Bk Ik

] [ȳk
x̄k

]
=

[
B̂k 0

]
Qk

[
ȳk
x̄k

]
=
[
B̂k 0

] [z̄k
0

]
= B̂k z̄k ,

for some z̄k ∈ IRk : z̄k = (ζ1, . . . , ζk)
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Generalized CRAIG

β1e1 = Bk ȳk + x̄k =
[
Bk Ik

] [ȳk
x̄k

]
=

[
B̂k 0

]
Qk

[
ȳk
x̄k

]
=
[
B̂k 0

] [z̄k
0

]
= B̂k z̄k ,

for some z̄k ∈ IRk : z̄k = (ζ1, . . . , ζk)

ζ1 = β1/α̂1, ζi+1 = −β̂i+1ζi/α̂i+1, (i = 1, . . . , k − 1).
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Generalized CRAIG

Solving for xk directly, and bypassing x̄k , may now be done. By
definition,

xk = Uk x̄k = UkB̂−Tk z̄k .

Since B̂−Tk is upper bidiagonal, all components of B̂−Tk z̄k are
likely to change at every iteration. Fortunately, upon defining
Dk := UkB̂−Tk , and denoting di the i-th column of Dk , we are
able to use a recursion formula for xk provided that di may be
found easily. Slightly rearranging, we have

B̂kDT
k = UT

k

and therefore it is easy to identify each di—i.e., each row of
DT

k —recursively.
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Generalized CRAIG

Solving for xk directly, and bypassing x̄k , may now be done. By
definition,

xk = Uk x̄k = UkB̂−Tk z̄k .

d1 := u1/α̂1, di+1 := (ui+1− β̂i+1di )/α̂i+1, (i = 1, . . . , k − 1).

This yields the update

xk+1 = xk + ζk+1dk+1

for xk+1.
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Generalized CRAIG: errors bound

Let B̂k be defined as above and Dk := UkB̂−Tk . For k = 1, . . . , n,
we have

DT
k (AN−1AT + M)Dk = Ik .

In particular,

xk =
k∑

j=1

ζjdj

and we have the estimates

‖xk‖2
AN−1AT+M =

k∑
i=1

ζ2
i , (4a)

‖x∗ − xk‖2
AN−1AT +M =

n∑
i=k+1

ζ2
i , (4b)
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Generalized CRAIG: errors bound

As for generalized LSQR, we can estimate the error using the
windowing technique and we can give a lower bound of the error by

ξ2
k,d =

k+d+1∑
j=k+1

ζ2
i ≤ ‖x∗ − xk‖2

AN−1AT +M

and we can estimate ‖x∗‖AN−1AT +M by the lower bound
∑k

j=1 ζ
2
j .

129 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Generalized CRAIG: errors bound

As for GLSQR. If we know a lower bound of singular values we can
use an approach inspired by the Gauss-Radau quadrature algorithm
and similar to the one described in Golub-Meurant (2010).
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Other variants:

Generalized LSMR

minimize
y∈IRm

1
2‖N−

1
2 (ATM−1b− (ATM−1A + N)y))‖2.

Generalized Craig-MR

Error bounds similar to the ones given above exist for the MR
variants
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Other variants:

Generalized LSMR

Generalized Craig-MR

Error bounds similar to the ones given above exist for the MR
variants
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Numerical experiments

We will focus on optimization problems:

minimize
x∈IRn

gTx + 1
2xTHx subject to Cx = d, x ≥ 0,

where g ∈ IRn and H = HT ∈ IRn×n is positive semi-definite, and
result in linear systems with coefficient matrix[

H + X−1Z + ρI CT

C −δI

]
where ρ > 0 and δ > 0 are regularization parameters.
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Numerical experiments MINRES

This is a blow-up of some iterations
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Numerical experiments GLSQR
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109 Residual of Normal Equations

Figure : Problem DUAL1 (255, 171).
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Numerical experiments GLSQR
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Figure : Problem MOSARQP1 (5700, 3200).
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How to choose d?

problem m n
dual1 255 171
stcqp1 12291 10246

qpcboei1 1355 980
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Numerical experiments GCraig

d = 5, 15
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Figure : Problem dual1
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CG?
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Numerical experiments CG

d = 5, 15
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Figure : Problem DUAL1 and MOSARQP1 (5700, 3200).
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Numerical experiments CG

d = 5, 15
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Figure : Problem Stokes (IFISS 3.1): colliding and cavity
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Conclusions

I Preconditioning −→ Norms i.e. different topologies!!

I Nice relation between the algebraic error and the
approximation error

I A. and Orban ”Iterative methods for symmetric quasi definite
systems” Cahier du GERAD G-2013-32
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Lecture on linear regression and LS
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I QR algorithm

I Sparse least-squares problems

I Rounding error analysis
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Elementary matrices

I Givens transformation:

G =



1
. . .

c s
. . .

−s c
. . .

1



c2 + s2 = 1

I Householder transformation

H = I− 2
yyT

yTy
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Givens transformation

u ∈ IRn find n − 1, Gi such that

Gn−1 . . .G1u = ||u||2e1

If n = 2 [
c s
−s c

] [
x
y

]
=
√

x2 + y 2

[
1
0

]

c =
x√

x2 + y 2
s =

y√
x2 + y 2
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Householder transformation

(I− 2
yyT

yTy
)u = ±||u||2e1

y = u± ||u||2e1

y = u + sign(u1)||u||2e1

to avoid cancellation
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Householder transformation:example

H = Hm . . .H2H1A

HA =

[
R
0

]
HTH = HHT = I
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Product of Householder transformations

Let H1 and H2 be two Householder matrices

H1 = I− yyT H2 = I−wwT

‖y‖2 =
√

2 ‖w‖2 =
√

2

H1H2 = (I− yyT )(I−wwT )

= I− yyT −wwT + yyTwwT

= I−
[

y w
] [ 1 −yTw

0 1

] [
yT

wT

]
= I− YTYT
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Product of Householder transformations

Let H1 and H2 be two products of Householder matrices

H1 = I− YT1YT H2 = I−WT2WT

H1H2 = (I− YT1YT )(H2 = I−WT2WT )

= I− YT1YT −WT2WT + YT1YTWT2WT

= I−
[

Y W
] [ T1 −T1YTWT2

0 T2

] [
YT

WT

]
= I− Y3T3YT

3

BLAS-3 Operations in applying I− Y3T3YT
3 to a matrix.
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Least Squares

min
x
||Ax− b||2

|| • ||2 invariant for orthonormal transformation

min
x
||Ax− b||2 = min

x
||H(Ax− b)||2

= min
x
||
[

R
0

]
x−

[
b̃1

b̃2

]
||2

= min
x
||
[

Rx− b̃1

−b̃2

]
||2

x = R
−1

b̃1
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Error Analysis in mixed precision arithmetic

||fl(Hi )−Hi ||F ≤ ε+O(ε2)

Let C ∈ IRm×n. We first compute B = HiC and let B̃ = fl(HiC)

||B̃− B||F = ||[fl(fl(Hi )C)− fl(Hi )C] + (fl(Hi )C−HiC)||F
≤ ||fl(fl(Hi )C)− fl(Hi )C||F + ||(fl(Hi )C−HiC)||F
= ||E||F + ||fl(Hi )−Hi ||F ||C||F

||E||F ≤ ε||C||F +O(ε2)

||B̃− B||F ≤ c1ε||C||F +O(ε2)
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Error Analysis in mixed precision arithmetic

A1 = A Ai+1 = ĤiAi i = 1, . . . ,m

Ĥi produces zeros in positions i + 1 through m of column i of ĤiAi

The computed quantities will be

Ã1 = A Ãi+1 = fl(H̃i Ãi ) i = 1, . . . ,m

H̃i = fl(Hi ) where Hi (orthonormal) would have produced zeros in
positions i + 1 through m of column i of Hi Ãi

||Hi Ãi − fl(H̃i Ãi )||F ≤ c2ε||Ãi+1||F +O(ε2)

||Ãm −Hm . . .H1A||F ≤ c1mε||A||F +O(ε2)

Ãm =

[
R̃
0

]
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Error Analysis in mixed precision arithmetic

Exists an orthonormal matrix Q = Hm . . .H1 and a matrix E such
that

A + E = Q

[
R̃
0

]
||E||F ≤ c2m||A||F ε+O(ε2)

The computed solution x̃ of the least-squares problem is the exact
solution of the problem

minx ||(A + E1)x− (b + g)||2 = ||(A + E1)x̃− (b + g)||2
||E1||F ≤ c3m||A||F ε+O(ε2)

||g||2 ≤ c4m||b||2ε+O(ε2)
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Linear regression

For any random vector z, we denote by E [z] its mean and by
V [z] = E [(z− E [z])(z− E [z])T ] its covariance matrix.
The notation z ∼ N

(
z ,C

)
means that z follows a Gaussian

distribution with mean z and covariance matrix C.
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Linear regression

Let A ∈ IRm×n, m ≥ n, with Rank(A) = n. We consider the linear
regression model

y = AX + e,

where E [e] = 0 and V [e] = σ2Im. We point out that A defines a
given model and X is an unknown deterministic value.
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Linear regression: Gauss-Markov Theorem

The minimum-variance unbiased (MVU) estimator of X is related
to y by the Gauss-Markov theorem.
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Linear regression: Gauss-Markov Theorem
For the linear model the minimum-variance unbiased estimator of X

is given by
x∗ = (ATA)−1ATy.

V [x∗] satisfies V [x∗] = σ2(ATA)−1. If in addition,
e ∼ N

(
0, σ2Im

)
, m > n, and if we set

s2 =
1

m − n
||r||22,

where r = y − Ax∗, we have for our estimator of X

x∗ ∼ N
(
X, σ2(ATA)−1

)
,

and for s2, our estimator for σ2,

s2 ∼ σ2

m − n
χ2(m − n).
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Linear regression: Gauss-Markov Theorem

Moreover, the predicted value ŷ = Ax∗ and the residual r are
independently distributed as

ŷ ∼ N
(
AX, σ2A(ATA)−1AT

)
and

r ∼ N
(
0, σ2(I− A(ATA)−1AT )

)
.

155 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Linear regression

Let δŷ be a stochastic variable such that

δŷ ∼ N
(
0, τ2A(ATA)−1AT

)
.

Under the Hypotheses of Gauss-Markov and assuming that ŷ and
δŷ are independently distributed, we have

ŷ + δŷ ∼ N
(
AX, (τ2 + σ2)A(ATA)−1AT

)
.

Moreover, we have that

||δŷ||22 ∼ τ2χ2(n).
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Linear regression: a perturbation Theorem
Let δŷ be a stochastic variable such that

δŷ ∼ N
(
0, τ2A(ATA)−1AT

)
.

Under the hypotheses of Gauss-Markov Theorem and assuming
that ŷ and δŷ are uncorrelated, there exist two stochastic variables

δx∗ ∼ N (0, τ2(ATA)−1),
δy ∼ N (0, τ2Im),

such that

1. ŷ + δŷ = A(x∗ + δx∗),

2. x∗ + δx∗ is MVU estimator of X for

y + δy = AX + ē, ē ∼ N (0, (σ2 + τ2)Im),

3. and

s̄2 =
1

m − n
||y + δy − A(x∗ + δx∗)||22,

is the estimator for ρ2 = σ2 + τ2 with s̄2 ∼ σ2+τ2

m−n χ
2(m − n).
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Least squares problem
The minimum-variance unbiased (MVU) estimators of X and σ2 are
closely related to the solution of the least-squares problem (LSP),

min
x
||y − Ax||22

where y is a realization of y. The least-squares problem (LSP) has
the unique solution

x∗ = (ATA)−1ATy,

and the corresponding minimum value is achieved by the square of
the euclidean norm of

r = y − Ax∗ = (I− P)y

where the matrix I− P = I− A(ATA)−1AT is the orthogonal
projector onto Ker(AT ) and P is the orthogonal projector onto
Range(A).
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Least squares problem

We remark here that the solution of LSP is deterministic and,
therefore, supplies only a realization of the MVU x∗ and of s2 the
corresponding estimator of σ2.
The vector x∗ is also the solution of the normal equations, i.e. it is
the unique stationary point of ||y − Ax||22:

ATAx∗ = ATy.

We will denote its residual in the following by

R(x) = AT (y − Ax)
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Least squares problem

Given a vector x̃ ∈ IRn, the following relations are satisfied:(
I− P

) (
y − Ax̃

)
=

(
I− P

)
y,(

y − Ax̃
)

=
(
y − Ax∗

)
+ A(ATA)−1AT

(
y − Ax̃)

=
(
y − Ax∗

)
+ A(ATA)−1R(x̃),

and, then, we have

||y − Ax̃||22 = ||y − Ax∗||22 + ||R(x̃)||2(AT A)−1 ,

owing to the orthogonality between y − Ax∗ and A(ATA)−1R(x̃).
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Least squares problem

From the orthogonality of the projector P, the following are
satisfied

y = Py+
(
I− P

)
y,

||y||22 = ||Py||22 + ||
(
I− P

)
y||22,

||y||22 − ||Py||22 = ||
(
I− P

)
y||22 = ||y − Ax∗||22.

Moreover, we have

||Py||22 = yTA
(
ATA

)−1
ATy = x∗TATAx∗,

and, then we conclude that

||y||22 − ||x∗||2AT A = ||
(
I− P

)
y||22 = ||y − Ax∗||22.
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Least squares problem

Finally, it is easy to verify that, given x̃ as an approximation of x∗,

δy = −A(ATA)−1R(x̃)

is the minimum norm solution of

min
w
||w||22 such that ATAx̃ = AT (y + w).

Moreover, using R(x̃) = AT (y − Ax̃) = ATA(x∗ − x̃), we have

||δy||22 = ||R(x̃)||2(AT A)−1 = ||x∗ − x̃||2AT A.
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Probabilistic tests and perturbation theory

We have that expression

||δy||22 = ||R(x̃)||2(AT A)−1 = ||x∗ − x̃||2AT A.

gives a useful key to understand our stopping criteria and their
probabilistic nature. If y can be seen as a realization of a
stochastic variable

δŷ ∼ N
(
0, τ2P

)
then, based on the perturbation Theorem, the values x̃ and

r̃ = y−Ax̃ are realizations of the stochastic variables associated to

y + δy = AX + ē, ē ∼ N (0, (σ2 + τ2)Im),
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Probabilistic tests and perturbation theory

We have that expression

||δy||22 = ||R(x̃)||2(AT A)−1 = ||x∗ − x̃||2AT A.

gives a useful key to understand our stopping criteria and their
probabilistic nature. If y can be seen as a realization of a
stochastic variable

δŷ ∼ N
(
0, τ2P

)
then, based on the perturbation Theorem, the values x̃ and

r̃ = y−Ax̃ are realizations of the stochastic variables associated to

y + δy = AX + ē, ē ∼ N (0, (σ2 + τ2)Im),

In practice, we can only check the plausibility of this hypothesis
using statistical tests. Fixing some probability threshold η, we
check if there is any statistical reason for refusing the previous
hypothesis, i.e. the probability we are wrong is very low (< η).
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χ2 distribution test

δy is a projection onto Range (A). If δy is a realization of a
stochastic variable δŷ satisfying

min
w
||w||22 such that ATAx̃ = AT (y + w).

then ‖δy‖2
2 is a realization of ‖δŷ‖2

2 ∼ τ2χ2(n).
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χ2 distribution test

Therefore, we consider that δy is a sample of the stochastic
variable δŷ, if for some small enough η,

Probability(‖δŷ‖2
2 ≥ ‖δy‖2

2) ≥ 1− η,

where we assume that the random variable
‖δŷ‖2

2
τ2 follows a centered

χ2 distribution with n degrees of freedom.
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χ2 distribution test

Thus, we can formulate our criterion as

pχ

(‖δy‖2
2

τ2
, n

)
≡ Probability

(‖δŷ‖2
2

τ2
≤ ‖δy‖

2
2

τ2

)
≤ η, (5)

where, since δŷ is a Gaussian distribution with covariance matrix
A(ATA)−1AT , the value of pχ (., n) is the cumulative distribution
function of the χ2 distribution Abramowitz-Stegun (26.4): The
probability that X2 =

∑
i X

2
i with ν degrees of freedom

Xi ∼ N
(
0, 1
)
, is such that X 2 ≤ χ2 is

Prob(χ2|ν) =
[
2ν/2Γ(

ν

2
)
]−1

∫ χ2

0
t
ν
2
−1e

t
2 dt.
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χ2 distribution test

Moreover, the corresponding x̃ is the exact solution of

ATAx̃ = AT (y + δy).

Thus, we can interpret x̃ as a realization of the stochastic variable
x∗ + δx∗ and Ax̃ as a realization of y + δy: i.e. we have, with
probability η, realizations consistent with the perturbed linear
regression problem, that, if we choose τ2 � σ2, is only marginally
different from the original.
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Stopping criteria for CGLS

If we use the conjugate gradient method in order to compute the
solution, it is quite natural to have a stopping criterion which takes
advantage of the minimization property of this method and of the
stochastic properties of the underpinning problem
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Stopping criteria for CGLS

PCGLS algorithm Given an initial guess x(0), compute r (0) =
(
y−Ax(0)), R(0) = AT r (0), and solve Mz(0) = R(0).

Set q(0) = z(0), β0 = 0, ν0 = 0, χ1 = R(0)T z(0), and ξ−d =∞.

k = 0

while z(ξk−d , ‖r (0)‖2, νk , τ
2, σ2)) > η do

k = k + 1;

p = Aq(k−1);

αk−1 = χk/||p||22;
ψk = αk−1χk ; νk = νk−1 + ψk ;

x(k) = x(k−1) + αk−1q
(k−1);

R(k) = R(k−1) − αk−1A
T q(k−1);

Solve Mz(k) = R(k);

χk+1 = R(k)T z(k) ;
βk = χk+1/χk ;

q(k) = z(k) + βkq
(k−1);

if k > d then

ξk−d =
k∑

j=k−d+1

ψj ;

else
ξk−d =∞;

endif
end while.
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χ2 stopping criteria for PCGLS

To detect the convergence as early as possible and avoid
over-solving in the LSP, we consider a δyk with minimum
Euclidean norm such that x(k) exactly solves a LS problem. Using
the estimations we have

IF pχ

(
ξk
τ2
, n

)
≤ η THEN STOP .

In order to have perturbations of ŷ that not distort excessively the
statistical properties of the original linear regression, we assume
that τ2 � σ2.
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χ2 stopping criteria for PCGLS

We re-iterate that χ2 test is a measure of the probability that the
numerical values computed at step k will be statistically equivalent
to those obtained solving an LSP related to a perturbed linear
regression model exactly where the statistical errors
e ∼ N

(
0, (σ2 + τ2)Im

)
, i.e. small value of η will indicate that the

probability of stopping at the wrong place is small.
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χ2 stopping criteria for PCGLS

We re-iterate that χ2 test is a measure of the probability that the
numerical values computed at step k will be statistically equivalent
to those obtained solving an LSP related to a perturbed linear
regression model exactly where the statistical errors
e ∼ N

(
0, (σ2 + τ2)Im

)
, i.e. small value of η will indicate that the

probability of stopping at the wrong place is small. In PCGLS,
we can choose

z(ξk , ‖r (0)‖2, νk , τ
2, σ2) = pχ

(
ξk(m − n)

τ2
, n

)
.
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Choice of η and τ 2 for the χ2 and F-test stopping criteria

We seek choices of η and τ2 that will depend on the properties of
the problem that we want to solve and, in the practical cases, we
would like η and τ2 to be much larger than ε , the roundoff unit of
the computer finite precision arithmetic.
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Choice of η and τ 2 for the χ2 and F-test stopping criteria

The choice of η is related to the probability the user subjectively
feels as adequate, i.e. he/she accepts that the probability of
choosing the wrong iterate is less than η. In our experiments, we
chose η = 10−8 which is quite conservative. This value is close to
the probability of winning the lotto.
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Choice of η and τ 2 for the χ2 and F-test stopping criteria

The choice of τ2 is also related to a priori knowledge of the
statistical properties of the linear regression problem and in
particular to the user knowledge of a reliable value of σ2 or of an
interval where σ2 lies. We experimented with several values of τ2.
The numerical results suggest that the choice τ2 = σ2 gives
reliable answers in the majority of our tests and they are always
consistent with the results of Theorem on perturbations. When σ2

is approximated by its upper bound (‖y‖2
2 − νk)/(m − n) and the

dynamical choices are used τ2
k = (‖y‖2

2 − νk)/(m− n) we can have
an early stop because (‖y‖2

2 − νk)/(m− n) is a poor approximation
of the true standard deviation. However, smaller values of τ2

k

(τ2
k = 0.1(‖y‖2

2 − νk)/(m − n) or τ2
k = 0.01(‖y‖2

2 − νk)/(m − n))
proved more robust and reliable. In these cases it would be useful
to have lower bound approximations of σ2. Unfortunately, to
compute a lower bound of (‖y‖2

2 − νk)/(m − n) can be costly.
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Choice of η and τ 2 for the χ2 and F-test stopping criteria

The values of ξk and νk are lower bounds respectively for the true
energy norm of the errors and the energy norm of the solution,
which are both independent of the preconditioner used. However, a
good preconditioner will help to reduce the delay factor d . i.e. we
will have better approximations at a cheaper computational cost.
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Data assimilation test

Data assimilation problems constitute an important class of
regression problems. Their purpose is to reconstruct the initial
conditions at t = 0 of a dynamical system based on knowledge of
the system’s evolution laws and on observations of the state at
times ti . More precisely, consider a linear dynamical system
described by the equation u̇ = f (t, u) whose solution operator is
given by u(t) = M(t)u0. Assume that the system state is observed
(possibly only in parts) at times {ti}Ni=0, yielding observation
vectors {yi}Ni=0, whose model is given by yi = Hu(ti ) + ε, where ε
is a noise with covariance matrix Ri = σ2I .
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Data assimilation test

We are then interested in finding u0 which minimizes

1

2

N∑
i=0

‖HM(ti )u0 − yi‖2
R−1
i
.

We consider here the case where the dynamical system is the linear
heat equation in a two-dimensional domain, defined on
S2 = [0, 1]× [0, 1] by

∂u

∂t
= −∆u in S2, u = 0 on ∂S2, u(., 0) = u0 in S2.

170 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Data assimilation test

The system is integrated with timestep dt, using an implicit Euler
scheme. In the physical domain, a regular finite difference scheme
is taken for the Laplace operator, with same spacing h in the two
spatial dimensions. The data of our problem is computed by
imposing a solution u0(x , y , 0) computing the exact system
trajectory and observing Hu at every point in the spatial domain
and at every time step. In our application, m = 8100,
n = 900 = 302, dt = 1, h = 1/31, N = 8 and
H = diag(11.5, 21.5, . . . , n1.5). The observation vector y is obtained
by imposing u0(x , y , 0) = 1

4 sin( 1
4 x)(x − 1) sin(5y)(y − 1), and by

adding a random measurement error with Gaussian distribution
with zero mean and covariance matrix Ri = σ2In, where σ = 10−3.
In our numerical experiments, we use PCGLS without
preconditioner.
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Data Assimilation test: results

Our choice of not using a preconditioner is not optimal, however,
the choice of d = 5 in this problem gives reliable answers and
stable behaviour of the stopping criteria.
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Data Assimilation test: results

(a) (b)

(c) (d)
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Lecture on LDLT multifrontal and GMRES and FGMRES
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Outline

I GMRES and Flexible GMRES

I Multifrontal

I Static pivoting

I Roundoff error analysis

I Mixed precision

I Test problems

I Numerical experiments
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GMRES and FGMRES

Let r0 = b− Ax0 and Kk(A, r0) be the usual Krylov space
GMRES

min
x∈x0+Kk (A,r0)

||r0 − Ax||2 r0 − Axk⊥AKk(A, r0)
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GMRES and FGMRES

Let r0 = b− Ax0 and Kk(A, r0) be the usual Krylov space
GMRES

min
x∈x0+Kk (A,r0)

||r0 − Ax||2 r0 − Axk⊥AKk(A, r0)

GMRES Left preconditioning

L−1Ax = L−1b

{
(L−1A,L−1b) −→ (A,b)
Kk(L−1A,L−1r0) −→ Kk(A, r0)

changes the norm.
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GMRES

min
x∈x0+Kk (A,r0)

||r0 − Ax||2 r0 − Axk⊥AKk(A, r0)

GMRES Right preconditioning
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(AM−1, r0) −→ (A, r0)
Kk(AM−1, r0) −→ Kk(A, r0)
xk = M−1yk
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GMRES and FGMRES
Let r0 = b− Ax0 and Kk(A, r0) be the usual Krylov space
GMRES

min
x∈x0+Kk (A,r0)

||r0 − Ax||2 r0 − Axk⊥AKk(A, r0)

GMRES Right preconditioning

AM−1y = b


(AM−1, r0) −→ (A, r0)
Kk(AM−1, r0) −→ Kk(A, r0)
xk = M−1yk
AM−1Vk = Vk+1Hk

Flexible GMRES Right preconditioning

Zk −→ Kk(A, r0), xk = x0 + Zkyk AZk = Vk+1Hk

Zk = span(r0,AM−1
1 r0, . . . ,

k−1∏
j=0

AM−1
j

 r0)
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Linear system

We wish to solve large sparse systems

Ax = b

where A ∈ IRN×N is symmetric indefinite
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Linear system

A particular and important case arises in saddle-point problems
where the coefficient matrix is of the form[

H A
AT 0

]
Since we want accurate solutions and norm-wise backward stability,
we will use as preconditioners fast factorizations of A computed
using static pivoting or mixed precision arithmetic.
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Multifrontal method

ASSEMBLY TREE

AT EACH NODE

F F

F F

11 12

2212

T

F22 ← F22 − FT
12F−1

11 F12
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Multifrontal method

I From children to parent
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Multifrontal method

I From children to parent

I ASSEMBLY
Gather/Scatter operations
(indirect addressing)
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Multifrontal method

I From children to parent

I ASSEMBLY
Gather/Scatter operations
(indirect addressing)

I ELIMINATION Full
Gaussian elimination,
Level 3 BLAS (TRSM,
GEMM)
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Multifrontal method

F F

F F

11 12

2212

T

Pivot can only be chosen fromF11 block since F22 is NOT fully
summed.
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Multifrontal method

F F

F F

11 12

2212

T

0

0

Situation wrt rest of matrix
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Pivoting (1× 1)

x

y

Choose x as 1× 1 pivot if |x | > u|y |
where |y | is the largest in column.
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Pivoting (2× 2)

x2
x2
x1
x3

y
z

For the indefinite case, we can choose 2× 2 pivot where we
require ∣∣∣∣∣

[
x1 x2

x2 x3

]−1
∣∣∣∣∣
[
|y |
|z |

]
≤
[

1
u
1
u

]
where again |y | and |z | are the largest in their columns.
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Pivoting

x

y

k

k

If we assume that k − 1 pivots are chosen but |xk | < u|y |:

I we can either take the RISK and use it or

I DELAY the pivot and then send to the parent a larger Schur
complement.
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Pivoting

x

y

k

k

If we assume that k − 1 pivots are chosen but |xk | < u|y |:
I we can either take the RISK and use it or

I DELAY the pivot and then send to the parent a larger Schur
complement.

This can cause more work and storage
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Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing xk by

xk + τ

and CONTINUE.

This is even more important in the case of parallel implementation
where static data structures are often preferred
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xk + τ

and CONTINUE.

This is even more important in the case of parallel implementation
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Static Pivoting

Several codes use (or have an option for) this device:

I SuperLU (Demmel and Li)

I PARDISO (Gärtner and Schenk)

I MA57 (Duff and Pralet)
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Static Pivoting

We thus have factorized

A + E = LDLT = M

where |E| ≤ τ I

The three codes then have an Iterative Refinement option.
IR will converge if ρ(M−1E) < 1
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Static Pivoting

Choosing τ

Increase τ =⇒ increase stability of decomposition

Decrease τ =⇒ better approximation of the original matrix,
reduces ||E||
Trade-off

I ≈ ε =⇒ big growth in preconditioning matrix M

I ≈ 1 =⇒ huge error ||E||.

Conventional wisdom is to choose

τ = O(
√
ε )

In real life ρ(M−1E ) > 1
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Right preconditioned GMRES

procedure [x] = right Prec GMRES(A,M,b)
x0 = M−1b, r0 = b− Ax0 and β = ||r0||
v1 = r0/β; k = 0;
while ||rk || > µ(||b||+ ||A|| ||xk ||)

k = k + 1;
zk = M−1vk ; w = Azk ;
for i = 1, . . . , k do

hi ,k = vTi w ;
w = w − hi ,kvi ;

end for;
hk+1,k = ||w||;
vk+1 = w/hk+1,k ;
Vk = [v1, . . . , vk ]; Hk = {hi ,j}1≤i≤j+1;1≤j≤k ;
yk = arg miny ||βe1 −Hky||;
xk = x0 + M−1Vkyk and rk = b− Axk ;

end while ;
end procedure.189 / 215
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Right preconditioned Flexible GMRES

procedure [x] =FGMRES(A,Mi ,b)

x0 = M−1
0 b, r0 = b− Ax0 and β = ||r0||

v1 = r0/β; k = 0;
while ||rk || > µ(||b||+ ||A|| ||xk ||)

k = k + 1;

zk = M−1
k vk ; w = Azk ;

for i = 1, . . . , k do
hi ,k = vTi w ;
w = w − hi ,kvi ;

end for;
hk+1,k = ||w||; vk+1 = w/hk+1,k ;
Zk = [z1, . . . , zk ]; Vk = [v1, . . . , vk ];
Hk = {hi ,j}1≤i≤j+1;1≤j≤k ;
yk = arg miny ||βe1 −Hky||;
xk = x0 + Zkyk and rk = b− Axk ;

end while ;
end procedure.190 / 215
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Roundoff error 1

The computed L̂ and D̂ in floating-point arithmetic satisfy


A + δA + τE = M

||δA|| ≤ c(n)ε || |L̂| |D̂| |L̂T | ||
||E|| ≤ 1.

The perturbation δA must have a norm smaller than τ , in order to
not dominate the global error.

A sufficient condition for this is n ε || |L̂| |D̂| |L̂T | || ≤ τ

|| |L̂| |D̂| |L̂T | || ≈ n
τ =⇒ ε ≤ τ2

n2

Moreover, we assume that max{||M−1||, ||Z̄k ||} ≤ c̃
τ .
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Roundoff error

The roundoff error analysis of both FGMRES and GMRES can be
made in four stages:

1. Error analysis of the Arnoldi-Krylov process (Giraud and
Langou, Björck and Paige, and Paige, Rozložńık, and
Strakoš).

2. Error analysis of the Givens process used on the upper
Hessenberg matrix Hk in order to reduce it to upper
triangular form.

3. Error analysis of the computation of xk in FGMRES and
GMRES.

4. Use of the static pivoting properties and A + E = LDLT in
order to have the final expressions.

The first two stages of the roundoff error analysis are the same for
both FGMRES and GMRES. The last stage is specific to each one
of the two algorithms.
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1 r0/||r0||, zj = M−1

j vj
C = (z1,Az1,Az2, . . . ) = Vk+1Rk

Rk =


||r0|| H1,1 . . . H1,k

0 H2,1 . . . H2,k

0 0 . . . H3,k
...

...
...

...
0 0 0 Hk+1,k


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Strakoš).
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Roundoff error FGMRES
Theorem 1.

σmin(H̄k) > c7(k , 1)ε ||H̄k ||+O(ε 2) ∀k ,

|s̄k | < 1− ε , ∀k ,

(where s̄k are the sines computed during the Givens algorithm)
and

2.12(n + 1)ε < 0.01 and 18.53ε n
3
2κ(C(k)) < 0.1 ∀k

∃k̂, k̂ ≤ n

such that, ∀k ≥ k̂ , we have

||b− Ax̄k || ≤ c1(n, k)ε
(
||b||+ ||A|| ||x̄0||+ ||A|| ||Z̄k || ||ȳk ||

)
+O(ε 2).
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Roundoff error FGMRES
Moreover, if Mi = M,∀i ,

ρ = 1.3 ||Ŵk ||+ c2(k , 1)ε ||M|| ||Z̄k || < 1 ∀k < k̂ ,

where

Ŵk = [Mz̄1 − v̄1, . . . ,Mz̄k − v̄k ] ,

we have:

||b− Ax̄k || ≤

c(n, k)γε (||b||+ ||A|| ||x̄0||+ ||A|| ||Z̄k || ||M(x̄k − x̄0)||) +O(ε 2)

γ =
1.3

1− ρ.
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Roundoff error FGMRES
Theorem 2
Under the Hypotheses of Theorem 1, and

c(n)ε || |L̂| |D̂| |L̂T | || < τ

c(n, k)γε ||A|| ||Z̄k || < 1 ∀k < k̂

max{||M−1||, ||Z̄k ||} ≤ c̃
τ

we have

||b− Ax̄k || ≤ 2µε (||b||+ ||A|| (||x̄0||+ ||x̄k ||)) +O(ε 2).

µ =
c(n, k)

1− c(n, k)ε ||A|| ||Z̄k ||
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Roundoff error right preconditioned
GMRES

Theorem 3
We assume of applying Iterative Refinement for solving
M(x̄k − x̄0) = V̄k ȳk at last step.

Under the Hypotheses of Theorem 1 and c(n)ε κ(M) < 1

∃k̂, k̂ ≤ n

such that, ∀k ≥ k̂ , we have

||b− Ax̄k || ≤ c1(n, k)ε
{
||b||+ ||A|| ||x̄0||+

||A|| ||Z̄k || ||M(x̄k − x̄0)||+
||AM−1|| ||M|| ||x̄k − x̄0||+
||AM−1|| || |L̂| |D̂| |L̂T | || ||M(x̄k − x̄0)||

}
+O(ε 2).
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Roundoff error right preconditioned
GMRES

As we did for FGMRES, if

c(n)ε || |L̂| |D̂| |L̂T | || < τ

we can prove that ∃k∗ s.t ∀k ≥ k∗ the right preconditioned
GMRES computes a x̄k s.t.

||b− Ax̄k || ≤ c(n, k) ε
[
||b||+ ||A|| ||x̄0||+

||A|| ||Z̄k || ||M(x̄k − x̄0)||+
|| |L̂| |D̂| |L̂T | || ||M (x̄k − x̄0)||

]
+O(ε 2).
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Mixed precision arithmetic

I Very fast 32-bit arithmetic unit
M is the fl(LU) of A and ||M− A|| ≤ c(N)

√
ε ||A||

(ε = 2.2× 10−16)

I We use 32-bit arithmetic for factorization and triangular solves

I If κ(A)
√
ε > 1 then Iterative Refinement may not converge.

FGMRES does

I ||Ŵk || ≤
√
ε c(N)||A|| < 1 and

||M(x̄k − x̄0)|| ≤ ||b− Ax̄k ||+O(
√
ε ) ⇒ FGMRES backward

stable

I GMRES is not backward stable
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I ||Ŵk || ≤
√
ε c(N)||A|| < 1 and

||M(x̄k − x̄0)|| ≤ ||b− Ax̄k ||+O(
√
ε ) ⇒ FGMRES backward

stable

I GMRES is not backward stable

198 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Mixed precision arithmetic

I Very fast 32-bit arithmetic unit
M is the fl(LU) of A and ||M− A|| ≤ c(N)

√
ε ||A||

(ε = 2.2× 10−16)

I We use 32-bit arithmetic for factorization and triangular solves

I If κ(A)
√
ε > 1 then Iterative Refinement may not converge.

FGMRES does
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Improved error analysis for FGMRES
If we apply Flex-GMRES to solve the system, using finite-precision
arithmetic conforming to IEEE standard with relative precision ε
and under the following hypotheses:

2.12(n + 1)ε < 0.01 and c0(n)ε κ(C(k)) < 0.1 ∀k

where
c0(n) = 18.53n

3
2

and
|s̄k | < 1− ε , ∀k ,

where s̄k are the sines computed during the Givens algorithm
applied to H̄k in order to compute ȳk , then there exists k̂ , k̂ ≤ n
such that, ∀k ≥ k̂ , we have

||b− Ax̄k || ≤ c1(n, k)ε
(
||b||+ ||A|| ||x̄0||+

||A|| || |Z̄k | |ȳk | ||+ ||AZ̄k || ||ȳk ||
)

+O(ε 2).
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Test Problems

n nnz Description

CONT 201 80595 239596 KKT matrix Convex QP (M2)

CONT 300 180895 562496 KKT matrix Convex QP (M2)

TUMA 1 22967 76199 Mixed-Hybrid finite-element

Test problems
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MA57 tests

n nnz(L)+nnz(D) Factorization time

CONT 201 80595 9106766 9.0 sec

CONT 300 180895 22535492 28.8 sec

MA57 without static pivot

nnz(L)+nnz(D)+ Factorization time # static pivots
FGMRES (#it)

CONT 201 5563735 (6) 3.1 sec 27867

CONT 300 12752337 (8) 8.9 sec 60585

MA57 with static pivot τ = 10−8
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|| |L̂| |D̂| |L̂T | || vs 1/τ
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Test Problems: TUMA 1

0 0.5 1 1.5 2
x 104

0

0.5

1

1.5

2

x 104

nz = 87760

TUMA 1
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Test Problems: CONT-201
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Numerical experiments: TUMA 1

||b − Ax̄k ||
||b||+ ||A||||x̄k ||

||M(x̄k − x̄0)||
τ IR GMRES FGMRES ||Zk || GMRES FGMRES || |L| |D| |LT | ||

1.0e-03 3.0e-03 1.0e-14 7.2e-17 1.2e+02 3.5e-03 3.5e-03 4.4e+04
1.0e-04 5.3e-17 1.8e-16 3.1e-17 4.7e+01 4.4e-04 4.4e-04 1.8e+05
1.0e-05 5.1e-17 1.3e-16 1.9e-17 4.4e+01 4.5e-05 4.5e-05 1.8e+06
1.0e-06 1.5e-16 1.3e-16 1.9e-17 4.4e+01 4.5e-06 4.5e-06 1.8e+07
1.0e-07 1.8e-17 1.2e-16 2.0e-17 4.3e+01 4.5e-07 4.5e-07 1.8e+08
1.0e-08 1.7e-17 1.3e-16 1.8e-17 4.3e+01 4.5e-08 4.5e-08 1.8e+09
1.0e-09 1.8e-17 2.8e-15 1.8e-17 2.6e+01 4.0e-08 4.0e-08 1.8e+10
1.0e-10 1.7e-17 4.2e-13 1.8e-17 8.8e+00 4.0e-07 4.0e-07 1.8e+11
1.0e-11 6.7e-17 1.0e-10 6.2e-17 6.8e+00 4.0e-06 4.0e-06 1.8e+12
1.0e-12 2.1e-17 1.0e-08 2.2e-17 3.2e+01 4.3e-05 4.3e-05 1.8e+13
1.0e-13 2.0e-17 2.4e-07 1.9e-17 1.3e+02 3.9e-04 3.9e-04 1.8e+14
1.0e-14 8.6e-17 8.6e-06 2.1e-17 1.8e+02 4.3e-03 4.3e-03 1.8e+15

TUMA 1 results
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Numerical experiments: CONT 201

||b − Ax̄k ||
||b||+ ||A||||x̄k ||

||M(x̄k − x̄0)||
τ IR GMRES FGMRES ||Zk || GMRES FGMRES || |L| |D| |LT | ||

1.0e-03 4.0e-04 1.8e-05 9.8e-06 * 7.1e-04 1.5e-04 8.3e+07
1.0e-04 4.0e-05 2.0e-07 2.0e-07 * 1.5e-05 1.9e-05 1.8e+08
1.0e-05 3.5e-06 1.8e-12 1.1e-16 4.1e+05 5.9e-06 1.3e-05 4.4e+09
1.0e-06 3.5e-07 1.1e-11 2.1e-16 2.7e+06 7.8e-07 7.8e-07 1.8e+10
1.0e-07 4.0e-08 4.8e-11 1.8e-16 1.4e+08 8.7e-08 8.7e-08 1.9e+12
1.0e-08 3.8e-13 2.7e-10 5.8e-17 2.1e+07 1.3e-06 1.3e-06 1.8e+13
1.0e-09 5.5e-17 1.8e-09 4.5e-17 1.1e+07 1.3e-06 1.3e-06 1.5e+13
1.0e-10 7.7e-17 3.2e-09 7.2e-17 3.4e+05 9.2e-06 9.2e-06 1.5e+14
1.0e-11 4.6e-17 2.1e-09 4.5e-17 1.9e+03 2.8e-04 2.8e-04 2.6e+15
1.0e-12 5.2e-17 4.5e-07 3.8e-17 2.0e+02 9.5e-04 9.5e-04 1.6e+16
1.0e-13 1.3e-16 1.3e-04 2.6e-16 1.6e+02 1.1e-02 1.1e-02 4.1e+17
1.0e-14 1.2e-03 2.3e-01 2.5e-14 4.3e+02 1.9e-02 1.0e-02 9.2e+18

CONT 201 results
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Numerical experiments: CONT 300

||b − Ax̄k ||
||b||+ ||A||||x̄k ||

||M(x̄k − x̄0)||
τ IR GMRES FGMRES ||Zk || GMRES FGMRES || |L| |D| |LT | ||

1.0e-03 3.8e-04 3.6e-05 2.5e-05 * 8.7e-04 1.3e-04 2.5e+08
1.0e-04 3.6e-05 5.5e-07 5.5e-07 * 6.5e-05 2.8e-05 4.3e+09
1.0e-05 4.3e-06 8.7e-09 8.7e-09 * 3.7e-06 6.1e-06 1.4e+11
1.0e-06 3.7e-07 6.9e-11 1.4e-16 3.0e+06 5.7e-07 9.8e-07 6.2e+11
1.0e-07 6.8e-08 2.1e-10 8.2e-17 7.6e+06 2.3e-07 2.3e-07 2.0e+12
1.0e-08 2.1e-09 1.4e-08 1.2e-16 7.5e+07 1.8e-06 1.8e-06 4.1e+13
1.0e-09 1.1e-16 1.6e-05 8.8e-17 3.7e+07 2.8e-04 2.8e-04 3.7e+15
1.0e-10 3.9e-17 6.8e-07 4.1e-17 3.8e+05 3.6e-04 3.6e-04 9.6e+15
1.0e-11 4.0e-17 1.6e-06 8.7e-17 1.4e+03 5.3e-03 5.3e-03 1.0e+17
1.0e-12 7.3e-17 1.1e-06 2.7e-16 1.5e+02 1.0e-02 1.0e-02 1.9e+17
1.0e-13 1.8e-16 3.4e-03 9.2e-16 1.3e+02 1.9e-01 1.9e-01 1.3e+19
1.0e-14 1.1e-15 1.4e-01 1.8e-14 2.1e+02 4.7e-02 4.7e-02 6.6e+19

CONT 300 results
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Numerical experiments
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Numerical experiments
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Numerical experiments
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Restarted GMRES vs. FGMRES on CONT-201 test example:
τ = 10−8
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Numerical experiments
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IR vs FGMRES

Iterative refinement FGMRES

Matrix Total it RR Total / inner RR ‖AZ̄k̂‖ ‖ |Z̄k̂ | |ȳk̂ | ‖
bcsstk20

30 2.1e-15
2 / 2 1.4e-11 1.7e+00 4.6e+02

n = 485 4 / 2 3.4e-14 1.6e+00 3.8e-01
κ(A) ≈ 4× 1012 6 / 2 7.2e-17 1.6e+00 5.6e-04

bcsstm27

22 1.6e-15

2 / 2 5.8e-11 1.7e+00 2.7e+01
n = 1224 4 / 2 1.8e-11 6.3e-01 1.3e+00

κ(A) ≈ 5× 109 6 / 2 6.0e-13 2.0e+00 7.6e-02
8 / 2 1.5e-13 1.7e+00 1.0e-02

10 / 2 1.2e-14 1.7e+00 1.9e-03
12 / 2 2.6e-15 1.8e+00 1.7e-04
14 / 2 1.8e-16 1.6e+00 4.3e-05

s3rmq4m1

16 2.2e-15

2 / 2 3.5e-11 1.0e+00 8.6e+01
n = 5489 4 / 2 2.1e-13 1.1e+00 3.2e-01

κ(A) ≈ 4× 109 6 / 2 4.5e-15 1.7e+00 6.4e-03
8 / 2 1.1e-16 1.6e+00 1.3e-04

s3dkq4m2
53 1.1e-10 10 / 10 6.3e-17 1.2e+00 1.2e+03n = 90449

κ(A) ≈ 7× 1010
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Summary

I IR with static pivoting is very sensitive to τ and not robust

I GMRES is also sensitive and not robust

I FGMRES is robust and less sensitive (see roundoff analysis)

I Gains from restarting. Makes GMRES more robust, saves
storage in FGMRES ( but not really needed)

I Understanding of why τ ≈ √ε is best.
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