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Programme

1. Linear Algebra from a variational point of view
2. Short introduction to the Finite Element method (FEM) and
adaptive FEM

3. Complex networks
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Programme

Linear Algebra from a variational point of view:

» finite dimensional spaces on RN with a norm based on a
positive definite matrix A: a finite dimensional Hilbert spaces
theory

» duality and convergence in dual norm

> relations between finite-element approximation matrices and
measure of the error in energy

» Golub-Kahan bidiagonalisation method and elliptic singular
values
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Programme
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Short introduction to the Finite Element method (FEM) and
adaptive FEM:

>

How to use the properties of finite dimensional Hilbert spaces
in order to detect where we need to improve the mesh

Interplay between mesh graphs and matrices
Fiedler vectors and partitioning of graphs
Elements of Domain Decomposition techniques

Adaptive methods and a posteriori measures of the algebraic
errors within the Krylov iterative methods
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Programme

Complex networks

» Elementary introductions to random graphs (Erdos-Renyi,
Barabasi-Albert, and Watts- Strogatz random models) and
complex graphs2: random models vs real life models

» Embedding of a graph in RN: quantum graphs and
1D-simplex domains

» Solution of systems of parabolic equations on a quantum
graph3: Hamiltonians on graphs

» Applications in material science: Dirac’s model on graphene
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Prologue
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Prologue

When I'm feeling sad
| simply remember my favorite things
And then | don’t feel so bad
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Les boules
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Les boules
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Les boules

Y= v

IS the Volume of the N-dimensional Sphere and

lim V(N)—0

N—oo
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Les boules
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Les boules

FUNCTIONAL ANALYSIS IS LINEAR ALGEBRA COPING WITH
STRANGE BALLS
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Some friends

% on the interval [0, 1]
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Some friends

1 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
G'G= -1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 1

d2
(dt)? Laplacian with Neumann conditions on the interval [0, 1]

5 /215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014

Some friends
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Some friends

G is the INCIDENCE MATRIX of the graph and the grad operator.
GG is the on the graph.
I - GG is the ADJACENCY matrix of the graph.
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Some friends

We do not need a regular graph. On each edge, we have a map
from the RN space where it lives to the segment [0, 1] and we can
solve on each edge the local operator!!
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Some friends
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Some friends
We can insert points on each edge

0.8r 1

0.67 1

0.4; 1
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Some friends
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Some friends
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Some friends

... GRAPHENE
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TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.
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In a finite dimensional space all norms are equivalent i.e.

c(N)[[vllr < flvll2 < CN)[Iv]lx
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TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.
c(M[Ivll < [lvll2 < C(N)[Iv]]x
Identify the norms for which we have

clivily < lvll2 < Clivl]x

6 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.
c(M)[Ivlly < flvll2 < C(N)[Ivi]x
Identify the norms for which we have

cliviy < [lvlla < Cllvllx e |- [lr ~ [ ]]2
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Lecture 1
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Finite dimensional Hilbert spaces and RY

> (1) : $H x $H — R scalar product and

lullg = /(u,u)  Yu € $H norm.
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Finite dimensional Hilbert spaces and RY

> (1) : $H x $H — R scalar product and

lullg = /(u,u)  Yu € $H norm.

» H{i}i=1,. n a basis for

Yu e $H U:Z,’-V:lu,-@b,- ueR i=1,...
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Finite dimensional Hilbert spaces and RY

> (1) : $H x $H — R scalar product and

lullg = /(u,u)  Yu € $H norm.

» H{i}i=1,. n a basis for

Yu e $H U:le-vzlu,'lb,' ueR i=1,...

» Representation of scalar product in RV,
N N
Let u = Zi:l u;¢; and v = Zi:l V,'?/J,'.

Then
N N

() =33 wivi(i,0y) =vTH

i=1 j=1

where Hjj = Hj; = (¢;,¢;) and u,v € RN.

Moreover, u"Hu > 0 iff u # 0 and, thus H SPD.
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Dual space $*

» f € $H*:H — R (functional);
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Dual space $*

» f € $H*:H — R (functional);
» f(au+ Bv) = af(u)+ Bf(v)  VYu,veS$N
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Dual space $*

» f € $H*:H — R (functional);
» f(au+ Bv) = af(u)+ Bf(v)  VYu,veS$N

> $* is the space of the linear functionals on $)

f(u
1£1l5 = sup -
P Tells

9 /215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Dual space $*

» f € $H*:H — R (functional);
» f(au+ Bv) = af(u)+ Bf(v)  VYu,veS$N
> $* is the space of the linear functionals on $)

f(u
1£1l5 = sup -
P Tells

> If § finite dimensional and u = Z,N:l uj1);, then

f(u) =N, uif (i) = fTu
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Dual space $*

v

feH*:9H— R (functional);
flau+ Bv) = af(u) + Bf(v)  Yu,veH
H* is the space of the linear functionals on $

f(u
1£1l5 = sup -
P Tells

v

v

If $ finite dimensional and v = Z,N:l uj1);, then
f(u) =31, wif (i) = Fu

Dual vector

Let v € 9, u # 0, then If, € H* such that

fu(u) = llulls

v

v

(Hahn-Banach).
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Dual space $*

> Let $) be a Hilbert finite dimensional space and H the real
N x N matrix identifying the scalar product.
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Dual space $*

> Let $) be a Hilbert finite dimensional space and H the real
N x N matrix identifying the scalar product.

fu(u)=FfTu = (u"Hu)'/?

The dual vector of u has the following representation:
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Dual space $*

> Let $ be a Hilbert finite dimensional space and H the real
N x N matrix identifying the scalar product.

fu(u)=fTu = (u"Hu)/?
The dual vector of u has the following representation:

Hu
[ulln

and
Ifull3 =u"Hu=f"H'f
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Dual space basis

> The general definitions of a dual basis for § is

s ={ 5177
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Dual space basis

> The general definitions of a dual basis for § is

s ={ 5177

> The ¢; are linearly independent:

N N
> Bigi(u) =0 Yu € H=> _ Bigi(v;) = 0=p; =0,
i—1

i=1
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Dual space basis

> The general definitions of a dual basis for § is

s ={ 5177

> The ¢; are linearly independent:

N N
> Bigi(u) =0 Yu € H=> _ Bigi(v;) = 0=p; =0,
i—1 i—1

> (i) =i and f(u) = F(SN, uihi) = SN yiui

N N
i(u) = ¢(>_ ui) = u=—F = _ aj¢i
i=1 i=1
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Linear operator

> of 5 — U where $ and U finite dimensional Hilbert
spaces. H and V are the SPD matrices of the scalar products
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Linear operator

> of 5 — U where $ and U finite dimensional Hilbert
spaces. H and V are the SPD matrices of the scalar products

1 ullw

= V/2AH12),
el

110 = max = n =
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Linear operator

> of 5 — U where $ and U finite dimensional Hilbert
spaces. H and V are the SPD matrices of the scalar products

1 ullog

_ ||V1/2AH—1/2”2
[[ulls

o = max
|10 = ma
> The result follows from the generalized eigenvalue problem in

RN
A"VAu = \Hu
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Linear operator

> of 5 — U where $ and U finite dimensional Hilbert
spaces. H and V are the SPD matrices of the scalar products

1 ullog

_ ||V1/2AH—1/2”2
[[ulls

o =
116,20 = max

v

The result follows from the generalized eigenvalue problem in
RN
ATVAu = \Hu

(M) = Ml 1M1 .
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Linear operator

> of 5 — U where $H and U finite dimensional Hilbert
spaces. H and V are the SPD matrices of the scalar products

>
o u B
1 |90 = max 14w _ IVY2AHY2|
w0 [ulls
» The result follows from the generalized eigenvalue problem in
RN
ATVAu = \Hu
>

(M) = My - [M7 -1 e

The interesting case is k(M) independent of N
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Hilbert Space Setting: duality and adjoint

Given z € $*, we have

(z,u)g+ 6 =2 u=2"H 'Hu = (u,H '2)y,

w = H™'z Riesz vector corresponding to w = Y, w;¢; € 9.

13 / 215

Mario Arioli



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Hilbert Space Setting: duality and adjoint

Given z € $*, we have
(z,)ge55 =2 u=2"H 'Hu = (u,H '2)y,
w = H™1z Riesz vector corresponding to w = > widj € 9.

Let ¥ :H—F
¢* . § — H* (adjoint operator)

(€*v,u)ge 5 = (v, Cu)ge5 Vv EF,u€ESN.
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Hilbert Space Setting: duality and adjoint

Given z € $*, we have

(z,u)+ s =2"u=2"H 'Hu = (u,H '2)y,

w = H™ 'z Riesz vector corresponding to w = 3, wj¢; € 9.
Let ¥ :H—F

¢* . — H* (adjoint operator)

(€*v,u)ge 5 = (v, Cu)ze5 Vv EF, uESN.
Therefore, we have

<({”/)*V‘/ u>53*7f)

(Cu,F lv)p=u'C’v

Mario Arioli
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Hilbert Space Setting: normal equations

If we assume that § = $* then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C oM LoC H— N,
and it is represented by the matrix

C'HC.

14 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Hilbert Space Setting: normal equations

If we assume that § = $H* then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C oM LoC H i O,
and it is represented by the matrix
C'H'c.

If CT = C then the corresponding operator % is self-adjoint.
Moreover, we have that the operator

H oG HH
maps §) into itself.

(#1o%) 2 (H'C).
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Linear operators

Let us consider now the Hilbert spaces
M= (R [m), 9= (R |- n),
and their dual spaces

m* = (Rna || : ||M*1)a N = (Rma || : HN*1)7
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Linear operators

Let us consider now the Hilbert spaces
M= (R"[-lm),  N:=(R"-[n),
and their dual spaces

Dﬁ* = (Rn7 || ' ”M—1)7 m* = (Rm7 || ! HN_1)7

o N — M
<<,(Z{_)/, U>Em*,im < (U, MilAy)M = UTAY7 y € M, Vu € I,
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Linear operators

Let us consider now the Hilbert spaces
M= (R"[-lm),  N:=(R"-[n),
and their dual spaces

D:R* = (Rnu || : ”M—l)u m* = (Rm7 || : HN_1)7

o N — M
<"(Z{.yv u>9ﬁ*,§m = (U, MilAy)M = uTAY7 y € M, Vu € I,

<1Q{*U»Y>‘ﬁ*m = (y* NilATu)N - YTATUa ue m? V)/ € ma
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Linear operators
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Linear operators

M A
L

E M X DT — M x M.

The scalar product in 9t x D1 is represented by the matrix

H:{M N]'
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Lecture 2
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Linear systems: variational framework

» Find u € §) such that for all v e $

a(u,v) = L(v) (L(-) € H* dual space of 9)
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Linear systems: variational framework

» Find u € § such that for all v € $

a(u,v) = L(v) (L(-) € H* dual space of 9)

» Existence and uniqueness: Yv,w € §)

a(w,v) < Glwlglv]ls
a(w, v
sp 2V,
wes\{or (Wil
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Linear systems: variational framework

» Find u € §) such that for all v e $
a(u,v) = L(v) (L(-) € H* dual space of 9)
» Existence and uniqueness: Yv,w € §)

a(w, v

IN

GllwllsIvlls
a(w,v)

sup
wes\{or (Wil

Y

Gollvlls

> 9 =(R"[|-|ln) and $* = (RN, || [[n-1)
H SPD

19 / 215
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Finite dimensional Banach spaces and R"

» Other norms are possible on RV:
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Finite dimensional Banach spaces and R"

» Other norms are possible on RV:
> ull, = (XM, (6:)P)/2 with 1 < p < 00
N

>l = iz [uil)

> [Julloe = max; [ui]
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Finite dimensional Banach spaces and R"

» Other norms are possible on RV:
> Jullp = (S (u)P)V/2 with 1< p < oo
N

>l = iz [uil)

> [Julloe = max; [ui]

» Hyper-norms on RV of order k.

[P RN — Rk

I VAeR  [Aullp = [AMullz
Il Yu,veRN lu+v|z <z +[lv]z component-wise
11 ||UHEZO/<$UZON
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Linear operator hyper-norm

> Let ||ul[; and ||v||z two hyper-norms on R" and & a linear
operator between (R, || - [|z) and (R", || - [|5)

21 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Linear operator hyper-norm

> Let ||ul[; and ||v||z two hyper-norms on R" and & a linear
operator between (R, || - [|z) and (R", || - [|5)

» The norm is defined as

Iz = MeRP
Al o [A]
M = : :
1Al o A
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Linear operator hyper-norm

> Let ||ul[; and ||v||z two hyper-norms on R" and & a linear
operator between (R, || - [|z) and (R", || - [|5)

» The norm is defined as

Iz 5 = MeRP
1Al - (Al
M = : :
[Apall -l Apk
| 2
P k
R =Pw; =Py wnw ={0} B;nY;={0}
j=1 i=1
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Rigal-Gaches (1967) theorem

JAA, 36b such that: Irllz < Sllaflz +t
(A + AA)it = (b + Jb) and << where r is defined by
|AA|; 5 <S € RP[|dbl|; <t € R r=Aii—b

22 /215
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Rigal-Gaches (1967) proof

A Ay r u;
Apl Apk Fi up
(Sllallz): NT
AAj = ——— ri(Z})
Y (Slldlls + Itz

where _
(Z}) = (S|la[|3)izx

and zy is the dual vector of ux (z] ok = ([|d|5)k;

(IItllz)i

Ab; = = ri
(Sllafls + lItllz);
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Backward error

We have the following equivalence in a general Hilbert (true also
for a Banach):

db € BL(H), 3L € H* such that: llpulls < a|blls + B

a(t, v)+ b(i,v) = (L+dL)(v), where py € $* is defined by
= ~

Vv € 9, and (Ps V)gye 5 = a(l, v) — L(v),

16(, By < o, loLllg- < B YveshH

A., Noulard, and Russo (2001)
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Backward error (proof)

The proof will be given assuming that § is only a Banach space, thereby
showing that the theorem holds, even in a more general situation. For
this reason, in this proof, (and only here), we will use the notation of
duality pairs.
= This is obvious.
<: We will build two perturbations of a and L, respectively b and 4L,
such that :
a(l, v) + b(l, v) = L(v) 4+ 0L(v),Vv € .

We set:

Yu € 9, (py, V) = b(u,v) — L(v),Yv € 9;

H*.9

we have p, € H*.

25 / 215
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Backward error (proof)

We will denote by J, € (H*)* = H** the element of the bi-dual of 9,
which is associated to u in the canonic injection

J  H — VFCcHm
u — J,

defined by (Jy, f) gue g. = (f, U) 5. o, VF € H™. It is well-known that J is
a linear isometry (see e.g. H. BREZIS, Analyse Fonctionnelle, Théorie
et Applications, Masson, Paris, 1983.[lll.4 p. 39]). We then have

[Jallg== = [Tl = SUD| £ <1 (Ja» f>.ry*,y,x =
SUP| £ <1 (f, U>y3*7y3 = (fz, U>y)*,y, )

for a certain f; € H*. One must be aware of the fact that, here, we
cannot associate a vector v € ) to f;, unless §) is reflexive. In other

words we cannot find a v € § such that ||f;|| o~ = (fz, v) because

5%,
||fall»+ is a sup and not a max. It is a max if (and only if) § is reflexive.
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Backward error (proof)
Now, as has been done for the perturbation of a system of linear
equations, we define:

«
b(u,v) = _W (Jus fD>5§**,y) (pa, V>5§*,5‘)
and
B
oL(v) = ——— (pu, . g
V)= STl + 5 0o

It is obvious that b is continuous and bilinear from $ x $ to R, and
oL € $*; an easy computation shows that

SL(v) — b(T, v) =

B o )
Y + ~ Jflafl) k@ Piisy V) &+ = (Piry V) ¢
<O‘||“|ﬁ +B  alills+8 < Jore e ) (PiV)ge o = (P5: V)ge s

as required. Moreover, if we suppose that ||pzlls+ < o|ills + B, then
we have:
1blle(s) < o, [l0L]lg: < B.

27 / 215
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Backward error (Remark)

If $ is a reflexive Banach space, we can give a more expressive form to
the perturbation term b. In fact, in this case, we can identify J, and u
and obtain that

b(u,v) = auunw (Jur i) gyee g3+ (s V)ge 5
= W (fas U) e g (PEs V) v
~araieg {fa @ P, (u,v),

in analogy with the finite dimensional case.
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The symmetric case: conjugate gradient method
A symmetric positive definite
= (R || lla) and * = (R",[| - [|a-1)

At each step k the conjugate gradient method minimizes the energy
norm of the error dulk) = u — u(k) on a Krylov space u(® + Ky

min sulk)|2
mn6u©+nku a

[5u A = [|pyeo 15+ = [F5) |-

7K = b — AulW
Arioli Numer. Math. (2003)
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The symmetric case: conjugate gradient method

p(k=1)T (k1)

(k) — y(k-1) (k—1) =
u u + k1P g1 p(kil)TAp(kil),

r(k) = r(kil) _ OékflAp(kil)
()T (k)

k) — p(k k=1 =
p( ) = r( )+ 5k71p( )’ 5/(71 = Wv

where u(® =0 and r(® = p(©) = p.
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The symmetric case: conjugate gradient method

Taking into account that p()TApU) =0, j = j we have

N N

u = Z a,jp(j) ul3 = Z ajr(j)Tr(j)

J=1 J=1
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The symmetric case: conjugate gradient method

Taking into account that p()TApU) =0,/ # j we have

N N

u = Z (ljp(j) ul3 = Z (,le’(j)Tr(j)

J=1 J=1
uTAu =N, 5V, ajaipWTAp()

= YN a2pTApY)

but ajp(J)TAp(./) = r(J)Tr(J)
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The symmetric case: stopping criteria

» Classic Criterion:

IF [|Au(®) — b, < V|b|l, THEN STOP,
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The symmetric case: stopping criteria

» Classic Criterion:

IF |[Au®) —b||» < v/|b|> THEN STOP ,

» New Criterion:

IF ||Au®) —b|[p-1 < n|/b]|4-2 THEN STOP ,

with 7 < 1 an a-priori threshold fixed by the user.
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The symmetric case: stopping criteria

» Classic Criterion:

IF [|Au(®) — b, < V|b|l, THEN STOP,

» New Criterion:
IF ||Au®) —b|[p-1 < n|/b]|4-2 THEN STOP ,

with 17 < 1 an a-priori threshold fixed by the user. The choice
of n will depend on the properties of the problem that we
want to solve, and, in the practical cases, 7 can be frequently
much larger than ¢ , the roundoff unit of the computer finite
precision arithmetic.
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The symmetric case: stopping criteria cn

AU bps ?
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The symmetric case: stopping criteria cn

AU bps ?

1|41 ?
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The symmetric case: stopping criteria cn

HAU(k) —bl[a1
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The symmetric case: stopping criteria cn

HA"(k) —bl[a1

> Hestenes-Stiefel rule (1952) (see Strako$ and Tichy, 2002)
numerically stable
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The symmetric case: stopping criteria cn

HA"(k) —bl[a1

> Hestenes-Stiefel rule (1952) (see Strako$ and Tichy, 2002)
numerically stable

» Gauss quadrature rules (Golub and Meurant, 1997)
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The symmetric case: stopping criteria cn

HAU(k) —bl[a1

> Hestenes-Stiefel rule (1952) (see Strako$ and Tichy, 2002)
numerically stable
» Gauss quadrature rules (Golub and Meurant, 1997)

» Gauss equivalent to Hestenes-Stiefel rule (Strako and Tichy).
The Gauss quadrature does not require any a-priori knowledge
of the smallest and the biggest eigenvalues and computes a
lower bound of|[Au(®) — b][5-1.
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The symmetric case: stopping criteria cn

HAU(k) —bl[a1

> Hestenes-Stiefel rule (1952) (see Strako$ and Tichy, 2002)
numerically stable
» Gauss quadrature rules (Golub and Meurant, 1997)

» Gauss equivalent to Hestenes-Stiefel rule (Strako and Tichy).
The Gauss quadrature does not require any a-priori knowledge
of the smallest and the biggest eigenvalues and computes a
lower bound of|[Au(®) — b][5-1.

» Gauss-Lobatto and Gauss-Radau. They compute lower and
upper bounds using the extremes eigenvalues of A.
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The symmetric case: Hestenes-Stiefel rule

During the conjugate gradient iterates, we compute the scalar ay
and the conjugate vectors p(k) (pU )TAp =0, j # i) and the
residuals r(K). Thus,

and

N
5615 = )~ blRs =R = 3 T
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The symmetric case: Hestenes-Stiefel rule

Under the assumption that e&“d) << e,(\k), where the integer d

denotes a suitable delay, the Hestenes and Stiefel estimate £, will
be

36 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

The symmetric case: Hestenes-Stiefel rule

Under the assumption that e&“d) << e,(\k), where the integer d

denotes a suitable delay, the Hestenes and Stiefel estimate £, will
be

The choice of a value for d depends on preconditioner and
ill-conditioning.
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b"A"b

From
r(OTy = 0, Vv € Ky,

we prove
k
b"A b =u"Au> Y apl)T¢l),
j=1
(the right-hand side will converge monotonically to |[ul|3).
Therefore, we use the following stopping criterion
k . .
IF & <n*> ayrDTel) THEN STOP .

j=1
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Preconditioning

Let U a non singular matrix: the symmetric preconditioned system
is
U TAU'y=U""b  (y=Uu)
k=) Tp(k—1)
K) — (k=1 (k=1 _
y( ) = y( ) + Ckalp( ) Qg1 = ﬁ(kil)TuiTAuilzp\(kil),
’I:(k) :’I:(kfl) _ ak_lufTAuflﬁ(kfl)

OO T(k)
(k) — plk Sk—1 —
pl) =7k 4 g, _yplk1), ﬂk—l—m,

where y(© = 0 and ¥(® = p(® = b. In exact arithmetic we have

O =u"Tb-UTAU Ly
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Preconditioning

Let U a non singular matrix: the symmetric preconditioned system
is
U TAU'y=U""Tb  (y=Uu)
Flk=1) Tp(k—1)
k) _ y(k—1 =(k—1 _
y( ) - y( ) + Oék—lp( ) Qp—1 = is(k_l)TU_TAU_lb\(k_l)7
’l:(k) :’l:(k—l) _ ak_lu—TAu—la(k—l)

’r\(k)T’l:(k)
S(k) — p(k S(k—1 —
pl) =7 4 gi_ipt D, Pre-1 = Syt

where y(© = 0 and 79 = p(® = b. In exact arithmetic we have
O =u"Tb-—UTAU 1y,
Defining u¥) = U~1y(9) we have ¥) = U= T+(k). Then

70912 =7 OTYA-LUTR) = )2,

U-TAU-1)-1
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Preconditioning

The dual norm of the preconditioned residual is equal to the dual
norm of the original residual.
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PCG algorithm

40 / 215

Preconditioned Conjugate Gradient Algorithm (PCG)

Given an initial guess u®, compute r® =p— Au®, and solve Mz©® = r©@_ Set

PO =20, py=0,a_1 =100 =b"u®, and § = co.

k=0
while = & > 1n%(po +r@Tu®) do
k=k+1;
i = kDT 6=
FE=DT k1)
k-1 = W;
Yk = k-1 Xk}

u® = &= g pkh;
PO = p&=D g ApkeD;
Solve Mz®) = r®);

FOT ()
b= v
Pt =25+ pep®D;
if =k > d then

k

& = Z Vs

Jj=k—d+1
else
& = &k-13
endif
end while.

Fig. 1. Preconditioned Conjugate Gradient Algorithm (PCG)
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Continuous problem

a(u,v) = / E(x)Vu- Vvdx, Yu,v e Hy(Q)
Q

Yu,v € H}(Q), 3y € Ry and IM € R, such that

2
Neullig < a(u, u)
a(u,v) < Mllullrallv

1.Q

L(v) = [ fvdx, L(v) € HT1(Q).

: 1
(P) { Find u € Hq (§2) such that has a unique solution.

a(u,v) = L(v), Vv e HQ),
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Finite-element approximation

» Weak formulation
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Finite-element approximation

» Weak formulation

Find u, € 9, such that
an(up, va) = Ly(vp),
Vv, € Hp,

Finite element methods choose ), to be a space of functions v,
defined on a subdivision Q of Q into simplices T of diameter ht ;
h denotes a piecewise constant function defined on 2 via

h|T = hT.
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Finite-element approximation

» Weak formulation

Find u, € 9, such that
an(up, va) = Ly(vp),
Vv, € Hp,

Finite element methods choose ), to be a space of functions v,
defined on a subdivision Q of Q into simplices T of diameter ht ;
h denotes a piecewise constant function defined on 2 via
h|T = hT.

» Existence and uniqueness: §, C $ = H}(Q).

» Error Estimate: ||u — upllg < C(h)
See Claes Johnson Numerical Solutions Of Partial Differential Equations By The Finite Element Method

2009
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Finite-element framework

Solve
Auh:b
given
A
sup sup WAV < G (sup-sup)
weR™ (0} veR" (0 [V IHIIWllk
T
inf sup _w Av > G (inf-sup)

weRM (0} yeRM, g0y [IVIIHIIWIH

Note: [[vills, = [[v]lu-
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Example: Mesh

RS ERE
IANLSANAAL

These I Mo
RIS

A\VA‘NAV ) ’ Z 5

“# N ARSI v,

e e S AR s

RSN Spad
%% AVAN AVZ

Jis s

&ZSK VKT INXK 7 Véﬂy
S SOOTNER AR DEERY
RARRE LN IR R AR
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Finite-element framework

Finally, assuming h < 1 and t > 0, and choosing n = O(h), we
have

k *
lu— u g < C*(h)||ulls + 2]|u — uplls < C(h).

where
» u(x) is the exact solution of the variational problem,
> up(x) is the exact solution of the approximate problem,

> u,(7k)(x) = Z,N:l ugk)qs,-(x) is the approximate solution at step

k. ( are the basis functions)
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Test problems

Problem 1 Problem 2
1 x€e Q\ {Q U UQ3}, 1 x € Q\ {2 UQUQs},
107%  xeQ, ) 100 xeaq,

=9 104 xea, =19 10t xeq,
1072 xe Q3. 102 x € Q3.

o Q r

0 01 02 03 04 05 06 07 08 09 1

Fig. 2. Geometry of the domain Q

L(v) = |, 10vdx, Vv € H(Q)
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Preconditioners: estimates for Kx(M™1A)

M Problem 1 | Problem 2
/ 3.6 108 1.8 1010
Jacobi 2.4 10% 1.5 10°
Inc. Cholesky(0) 7.2 103 4.3 108

n? = 3.44.305107° and N = 29619.

The condition numbers of the preconditioned matrices M~1A for
the second problem are are still very high, and only the incomplete
Cholesky preconditioner with drop tolerance 1072 is an effective
choice.
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Example: Problem 1

L Shape 2D Jacobi Preconditioner (d = 5)

10 ' ' ' ot 7t *
__ H SestimatelI3ull, /llull,
ftu u®i g all
Uy
AU bl\z/llbl\z
10' b 1
0 10° £¥ J
E
S
4
K
E]
3
2
€ 0
10 ¢ x E|
F3 OO0 XK K X X X X X X X X X X X
*******
******
R I
10 7L E
103 L L L L L L L L
0 5 10 15 20 25 30 35 40 45

Iteration

Fig. 3. Behaviour of the norms of the residual for the Jacobi preconditioner in Problem 1

15/ sisBehaviour of the norms of the residual for the Jacobi
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Example: Problem 1

L Shape 2D Cholesky(0) Preconditioner (d = 5)

10 T T .
* mou HA Traft
__H Sestimatel\«SuIIA/HuHA
Hu i all
x /1l
AU b, /bl
10° | * - 4

o'k

Residual Norms

*
L

3 I I I I I
0 5 10 15 20 25 30
Iteration

Fig. 4. Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
in Problem 1
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Example: Problem 2

L Shape 2D Cholesky(1e 2) Preconditioner (d = 160)
10 T T T T
T8 Ui, 71iatr,
__ H Sestimate I ull, /llull,
itu u®i il
x d Sla
10° — AU bll, /libll,
10° %
*
2 *
5 i
= 4 *
E] 10 - x 4
s %
o
& 1
%
10° %
%
* I S
%
%
¥
*
8 *
10 L | I I I
0 50 100 150 200 250
Iteration

300
Fig. 10. Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
with drop tolerance 1072 and d = 160 in Problem 2
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Example: Problem 2

LShape 2D Cholesky(1e2) Preconditioner (d = 10)

12 T T T >
o b'u /ity
1F D g
o
o
08t © 1
o
2
2 |
o
o
o . . . . .
0 20 40 60 80 100 120

Iteration

Fig. 9. Ratio b7 u® /|Ju| |3 for the incomplete Cholesky preconditioner with drop toler-
ance 1072 and d = 10 in Problem 2
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Example: Problem 2
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L Shape 2D Jacobi Preconditioner
T

10 : T !
—fAT (IIJ(I)Iz fibft,
fHu ol
10° | h —-d=10 4
0 | __d=70
Voo I\ d=90
100 || I | | Il Aol —d=130
| J
\‘ ‘\‘ | ]
10" F | 4
\ !
8
3 10° E
£ R
A SN
S10'k AR B
]
10 E
10°E E
|
1
I
10 ! E
105 L L L L L
0 200 400 600 800 1000 1200
Iteration

Fig. 6. Comparison of several estimates
Problem 2

of the energy error for d = 10, 70, 90, 130 in
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Lecture 3
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The non symmetric positive definite problem
a(u,v) # a(v, u)

A asymmetric but positive definite
H= %(AT + A) SPD
A=1AT+A)+I(AT-A)=H-N

How to calculate [|r(k)||4-17?

vV Vv v VY

» Solve preconditioned system

H—1/2AH—1/2ﬁ _ H—1/2b

> [[# Oy = (e[l
» 3-term recurrence
» Approximate it from Krylov subspace information.
See A., Login, and Wathen
Numer. Math. (2004) (DOI) 10.1007/s00211-004-0568-z
A. and Loghin Electronic Transactions on Numerical Analysis. 29,
(2008).
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inf-sup framework

Solve
Au=f
given
w’Av
sup sup —_— < Cl
weR"\{0} veR"\ {0} [[v]nwilm
T
A
inf sup _W AV > G

weRA (0} oeR" 107 VW]l

Note: ||vp||s5, = ||v||n defines the spd matrix H.
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(inf-sup)
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3-term recurrence Algorithm

Kx = span {HTH, HTINF, ... (HTIN)“ '}
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3-term recurrence Algorithm

K = span {H—lf, HINF,. .., (H—lN)Hf}
We compute the Lanczos vectors vU) by a 3-term recurrence:
ajv(jJrl) — H INvY) — ’Yj"(j) _ 51.\,(1*1)7 j>0

with v(=1) = 0 and v(©) = H-INF The coefficients aj, 7j, and f;
are chosen such that
v THYU) = 0

i.e. they are H orthogonal. Widlund SINUM,15, 1978
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3-term recurrence Algorithm

K\ = span {H—lf, HINF, ..., (H_lN)k_lf}
We compute the Lanczos vectors vU) by a 3-term recurrence:

with v(=1) = 0 and v(®) = H=INF The coefficients «;, ;, and f3;
are chosen such that
viDTHYY) = 5

i.e. they are H orthogonal. Widlund SINUM,15, 1978 This is
possible only in this case for the peculiar preconditioning and the
Skew-Symmetry of N. In general, we cannot have 3-term recurrent

formulae for non-symmetric matrices (see Faber-Manteuffel
SINUM, 21, 1984)
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One crime

Replace
lu = uplls, < C(h)

with )
lu— 6|5, < C(h)
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One crime

Replace
lu = uplls, < C(h)

with )
lu— 6|5, < C(h)

Sufficient condition

k
lu— unllsy, + [lun — ul s, ~ O(C(h))

\(8
lun — u§ 15, ~ O(C(h))
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Stopping criteria

A general stopping criterion:

k
lun — u$ s, = lu — u® |l < C(h)
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Stopping criteria

A general stopping criterion:
k
lun = uh?lls, = lu =l < C(h)

Residual equation
r() = A(u — u¥)

4

lu = u® g = [|AT Oy = (e g rar < C(h)
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Stopping criteria

Lemma Let (inf-sup) hold. Then

IF A ra < Cz_lﬂl’(k)HH—l-
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Stopping criteria

Lemma Let (inf-sup) hold. Then
IF ) a-rha-r < G HIF -1,
New stopping criterion

I s < GE(B) U .
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Examples

Elliptic problems in R? (Q unit square)

—V-(a(x)Vu) +b(x)- Vu+c(x)u = f in Q
u =0 on I.

where
(@)j, (b)i, c€ L™(Q), i,j=12,

ka(x) €7 < €Ta(x)€ < ku(x) €)%,
c(x) — %v b(x)>0 vxeQ.
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Examples

a(w,v)=(a-Vw,Vv)+ (b-Vw,v) + (cw, v),
is continuous and coercive with
C1 = [kl (@) + [IBll (@) + C(Q)[cll (@)
G = Xmelg kao(x),

wrt [ llo = [+ [y = [ [1-
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Examples

Error estimate:

lu— uply < Ch7|us, 1<s<2
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Examples

Error estimate:
lu— uply < Ch7|us, 1<s<2.

Issues
» What is h?

» How to approximate ||ul|s?
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Numerical experiments

» Discretization:
linear elements on uniform & adaptive meshes
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Numerical experiments

» Discretization:
linear elements on uniform & adaptive meshes

» Estimation of parameters

lu*lm

h~ ——
Huk”b7

k
[ulls ~ [|[Au™[|,
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Numerical experiments

Stopping criteria and estimates

» Residual dual norm: ||r¥||yy-1
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Numerical experiments

Stopping criteria and estimates
» Residual dual norm: ||r¥||yy-1

» Energy estimate ||uf — u*~1||y < Gh?||AuX]|,,
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Advection-diffusion problem

—eAu+b-Vu = f in
u = g on [.

b = (2y(1 — x?), —2x(1 — y?)),
1— eyzl
U(X>Y) =X (1—6_5) ’

Ivall, = elvals + > drllb- Va3 7
TeTh
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Advection-diffusion problem

7%
Y00
AT
e
Vs
00 2500, p g 00
r 20020, 0 s 0y
G,
Ty

0%

0200, %0.%

AL
DR

%%%%#
%
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Advection-diffusion problem

true error
residual dual norm
2-norm
interp error
final error
final interp error
energy estimate
error estimate

T T

BRREE

0 20 40 60 80 100 120 140

Uniform mesh; ¢ =1
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Advection-diffusion problem

10 1
true error
" residual dual norm
10~ | —— 2-norm q
—*— interp error
— final error
-10 " .
10 1| — final interp error 1
energy estimate
12 error estimate
10 ; .

0 50 100 150 200 250

Uniform mesh; ¢ = 107!
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Advection-diffusion problem

1074 7 ‘ \

t

true error
residual dual norm
2-norm
interp error
final error
final interp error
energy estimate
error estimate

T T

| [+1

0 50 100 150 200 250 300

Uniform mesh; ¢ = 102
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How to calculate ||r¥|[y-17?

» Solve preconditioned system
H71/2AH71/2ﬁ — Hfl/Zf

> (75, = [[r*la—
» 3-term recurrence.
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How to calculate ||r¥|[y-17?

» Concus & Golub, Widlund: 3-term recurrences for
nonsymmetric problems
» work in H-inner product
» do not minimize the residual norm.

Recall
Kk (r°, A) = span {rO,ArO7 el Ak_lro}

Arnoldi process
VI AV, = H,

where V]V = I, and Hx= Hessenberg.
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How to calculate ||r¥|[y-17?

Lemma Arnoldi applied to
Kik(°,A) = K (HV2° H7/2AH1/2)
and Arnoldi in the H-inner product applied to
Ki(#,A) = K (H 1O HTIA)
produce the same Hy. Moreover,

(He)j =0, |i—jl>1
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CG Conclusions

FINAL MESSAGE: DO NOT ACCURATELY COMPUTE THE
SOLUTION OF AN INACCURATE PROBLEM
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Linear operators

Let M € R™™ and N € R™" be symmetric positive definite
matrices, and let A € R™*" be a full rank matrix.

M= {veR™ |ullfy =v Mv}, = {q€R"|q]i =aq’ Nq}

M = {w € R™; |w|2-. =w M 1w},

N ={y e R"|lyla-: =y N 'y}
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Linear operators

Let M € R™*™ and N € R™" be symmetric positive definite
matrices, and let A € R™*" be a full rank matrix.

M = {v € R™; [|ulfs = v Mv}, 9t ={q R ql§ =’ Na}

M* = {w € R™; |w|2-. = w M 1w},

N ={yeR"|yld-: =y N 'y}

(v, AQ)mam- = v’ Aq, Aq € L(M) Vg €N
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Linear operators

Let M € R™™ and N € R™" be symmetric positive definite
matrices, and let A € R™*" be a full rank matrix.

M = {v € R™; [|ulfs = v Mv}, 9= {q R |q§ = a’ Na}

M* = {w € R™; ||w|2,-. = w M lw},

N ={y e R"|y|3-: =y Ny}

<V7 ACI>£m,£m* = VTAq7 Aq € ﬁ(m) Vq € .

The adjoint operator A¥ of A can be defined as

(A*g flu o =FTATg, ATge L(N) Vg e
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Elliptic SVD

Given g € 9t and v € M, the critical points for the functional

viAq
lalln [[viim

are the “elliptic singular values and singular vectors” of A.
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Elliptic SVD

Given g € 9t and v € M, the critical points for the functional
viAq
lalln ([v]lm

are the “elliptic singular values and singular vectors” of A.
The saddle-point conditions are

{ Aq,- = U,'MV,' V,-TMVJ' = 5,'_,'
ATV,' = a,-Nq,- q,-Tquzé,-j

01>02>--2>20,>0
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Elliptic SVD
Given q € 9t and v € M, the critical points for the functional
viAq
lalln ([v]m

are the “elliptic singular values and singular vectors” of A.
The saddle-point conditions are

)

Aq,- == U,'MV,' V-TMV_,' == 5,'_,'
ATV,' = o;Nq; q,.Tqu = 5U

01>022>--2>20,>0

The elliptic singular values are the standard singular values of
A =M"Y2AN"1/2, The elliptic singular vectors q; and v;, i=1,...,n
are the transformation by M~1/2 and N—1/2 respectively of the left and
right standard singular vector of A.
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Quadratic programming

The general problem

1 5 T
min —w' Ww —g'w
ATw=r 2 &

where the matrix W is positive semidefinite and
ker(W) Nker(AT) = 0 can be reformulated by choosing

M=W +vANIAT
u=w-Mlg
b=r—-A"Mlg.
as a projection problem
. 2
min |ju
min ully
If W is non singular then we can choose v = 0.
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:

BEIES
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Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m x n matrix are presented. All of
them can be theoretically applied to A and their generalization to
A is straightforward as shown by Bembow (1999). Here, we want
specifically to analyse one of the variants known as the

" Craig"-variant (see Paige Saunders (1982), Saunders
(1995,1997)).
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Generalized Golub-Kahan bidiagonalization

AQ = M\?['g] VIMV =1,
ATV = NQ [éT;o} A'NGQ =1,
where
&, 0 0 0
Bo  do 0 0
& .
0 ﬁnfl Op—1 0
0 0 Bn Qn
L 0 0 0 BnJrl
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Generalized Golub-Kahan bidiagonalization

AQ = Mv[0 ViMV =1,
ATV = NQI[BT;0] Q'NQ =1,
where
a; B O 0
0 a2 /2 0
B: ’ ... ..
0 0 Ap—1 anl
|0 0 0 |
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Algorithm

The augmented system that gives the optimality conditions for

MINATy—p HU|||2v|
M A ul |0
AT 0 pl | b

can be transformed by the change of variables

{u:Vz
P = Qy
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Algorithm

In 0 B VAl 0
0 lpm—pn O z | = 0
B 0 0 y Q"b
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Algorithm
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Algorithm

o o] [ lan )

Q"b = elb]n

the value of z; will correspond to the first column of the inverse of
B multiplied by ||b||n.
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Algorithm

Thus, we can compute the first column of B and of V:
a1Mv; = Aqq, such as

w = M_lAql
a; =w! Mw = wAq;

vi =w/ /a1
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Algorithm

Thus, we can compute the first column of B and of V:
a1Mv; = Aqs, such as

w=M"1Aq;
a1 =w! Mw = wAq;
vi =w/\/a1.

Finally, knowing gq; and v; we can start the recursive relations

gi+1 =N (ATv; — a;Ng;)
Bir1 =g Ng

di+1 =8 \/Bit+1
w=M"1(Aqg;;1 — Bir1MV))
Qg1 = WTMW

Viy1 = W/\/Oéi+1-
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

k
u(k) = Vka = ZCJ‘VJ'.

j=1
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

k
U(k) = Vka = ZQVJ‘.

j=1

The entries (; of zx can be easily computed recursively starting

with Ib]
N
G=-
aq
as 5
CI'+1:_ l CI I:]-a , N
i1
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p

Approximating p = Qy by p() = Quyx = Zj-;l 1;q;, we have that

Yk = —B;lzk.
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p

Approximating p = Qy by p (k) = = Qyk = Ej-(zl 1;q;, we have that

Yk = —B;lzk.

Following an observation made by Paige and Saunders, we can
easily transform the previous relation into a recursive one where
only one extra vector is required.
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p

Approximating p = Qy by p(K) = Quyx = Z};l 1;q;, we have that

yk:—lezk.
~1o7\" -TQT
From p(¥) = —Q,B P zk——(Bk Qk) zyand D, =B, "Q,
g = ¥ =Pl (dozo)
Q;

where d; are the columns of D.
Starting with p(l) = —(1d; and ul®) = (1v1

pitl) = p) — (iadia e
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Stopping criteria

Ju—u®)2, = |e®2, = ZC H [zok]H;

j=k+1
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Stopping criteria

Ju—u®2 = e} = Z 5 _H [Zok]Hi'

IAT U —bln-1 = [Brra Gl < o1lCe] = [|Al2]Cl.
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Stopping criteria

) = ey = S @ =z kale

j=k+1

IATu®) — bl[y-1 = [Brra Gl < 1]Cil = [1A]]2]Ckl.

Ip =PI = HQB_I <Z_ [ o D HN HeanH
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Error bound
Lower bound We can estimate [|e(¥)||2, by the lower bound

k+d+1

Ga= > G<leMi.

j=k+1

Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

Gas<T Y G<7luls

j=1
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Error bound
Lower bound We can estimate [|e(¥)||2, by the lower bound

k+d+1

Ga= > G<leMi.

j=k+1

Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

Gas<T Y G<7luls

J=1

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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inf-sup

Let $ and B be two Hilbert spaces, and $* and B* the
corresponding dual spaces. Let

a(u,v): H xH—R b(u,q) : H xP—R
la(u, V)| < llall |ullg lulls Vi€ $H,VveH
b(u, @)l < [l Ivlls [lallg Vuehn,VgeP

be continuous bilinear forms with ||a|| and ||b|| the corresponding

norms. Given f € $* and g € B*, we seek the solutions u € §) and
p € B of the system

a(u,v)+b(v,p) =(f,v)sgr YVveESH )
b(u, q) = (& Gy VaeP.
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inf-sup
We can introduce the operators .#, </ and its adjoint .&7*
M H =, (Mu,Vgews =a(u,v)  Yu€ENVVESDN
d* . oH =P, (@, q)pxp = b(u,q) YueHVgeP
o : ‘13—”3*7 <V>Mp>f)><5’)* = b(vap) VvenvpeP

and we have

(o *u, Q) xp = (U, 7 q) 55+ = b(U, q).

In order to make the following discussion simpler, we assume that
a(u, v) is symmetric and coercive on )

0 < xallulls < a(u,u).

However, Brezzi:1991 the coercivity on the kernel of &7 *,
Ker(27*) is sufficient. We will also assume that 3xo > 0 such
that
b(v, q) -
sup ——— = xol|qllp\ker(r) = X0 | _inf |lg+ qollg| -
ves [Ivils Il wer e qoEKer(<7) | v
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inf-sup

Under these hypotheses, and for any f € $* and g € Im(&/*)
then there exists (u, p) solution of saddle problem: v is unique and
p is definite up to an element of Ker(a/).
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inf-sup and Mixed finite-element method

Let now $), — $ and B, — P be two finite dimensional subspaces
of  and . As for the problem (2), we can introduce the
operators @, : Py — H} and Ap; Hp — H},. We also assume that

Ker(«),) C Ker(<)

b(vh, q
M > Xn”qthB\Ker(dh)
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inf-sup and Mixed finite-element method

Under the hypotheses of inf-sup, we have that
A(up, pn) € H x Py, solution of

a(un, V) + b(vh, pn) = (. Vh)ar.6,  YVh € Hh
b(un, qn) = (& an)pr.3,  Van € Ba-

and
lu—unllg + P — Pallg\ker(a) <
k| inf ||lu— vyl + inf — ),
(ot o= vl + i, 1o asly

where k = &(||a|[, ||b]|, x0, x1) is independent of h.
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inf-sup and Mixed finite-element method

Let {¢i};_1, m be a basis for H and {¢);};,_;  be a basis for
PBp. Then, the matrices M and N are the Grammian matrices of
the operators .# and <7. In order to use the latter theory, we need
to weaken the hypothesis, made in the introduction, that A be full
rank. In this case, we have that
» s elliptic singular values will be zero;
» however, the G-K bidiagonalization method will still work and,
if Aqy # 0, it will compute a matrix B of rank less than or
equal to n —s.
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inf-sup and Mixed finite-element method

On the basis of the latter observations, the error ||e(%)||y can be
still computed. Finally, we point out that for h | O the elliptic
singular values of all A € R will be bounded with upper and
lower bounds independent of h, i.e.

Xo < op, <o < o1 < Jal.
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inf-sup and Mixed finite-element method

Theorem
Under previous hypotheses, and denoting by u* one of the iterates
of Algorithm Craig for which ||e(¥)||m < T, we have

lu—u*lls + llp— P llp\ker(wr) <
K| inf |lu—vp|lg + inf — +7](2
(ot = vl + i, lp = asl +7 ) 2

where u* = > piut € Ny, pF = Zjnil ¢ip; € Pp and & a
constant independent of h.
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Two examples

Stokes

The Stokes problems have been generated using the software

87 / 215

Mario Arioli

provided by ifiss3.0 package (Elman, Ramage, and Silvester). We

use the default geometry of “Step case” and the Q2-Q1
approximation described in ifiss3.0 manual and in Elman,

Silvester, and Wathen (2005).

name m n nnz(M) | nnz(A)
Stepl | 418 61 2126 1603
Step2 | 1538 209 10190 7140
Step3 | 5890 | 769 | 44236 | 30483
Step4 | 23042 | 2945 | 184158 | 126799
Stepb | 91138 | 11521 | 751256 | 518897

(nnz(M) is only for the symmetric part)
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Two examples
name | # Iter:s | €@ | [ATu® —b] [ [lp— p®]2 | #(B)
Stepl 30 6.8e-16 5.1e-16 1.1e-13 7.6
Step2 32 5.4e-14 5.4e-14 5.0e-12 7.7
Step3 34 3.8e-14 2.7e-14 1.0e-11 7.8
Step4 34 5.0e-13 1.3e-13 1.4e-10 7.8
Step5 35 1.8e-13 3.1e-14 1.7e-10 7.8
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Stokes (Step) problems results (d =5, 7 = 107%).
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Two examples
Poisson with mixed b.c. Problems The Poisson problem is casted
in its dual form as a Darcy's problem:
Find we$H= {6| G € Hyiv(), G-n=0 ondn(Q)}, ueL?Q)
Jow q+fQ div(G)u = [, upd-n VG EH
Jodiv(w)v = [ fv Vv e [3(Q).

We approximated the spaces $) and L%(Q2) by RTO and by
piecewise constant functions respectively The matrix N is the mass
matrix for the piecewise constant functions and it is a diagonal
matrix with diagonal entries equal to the area of the corresponding
triangle. The matrix M has been chosen such that each
approximation ), of § is

9n={aeR" a3, =a"Ma}.
Therefore, denoting by W the mass matrix for 5, we have
M=W+AN'AT,
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Two examples

Poisson with mixed b.c. Problems

h=27Fk m n nnz(M) | nnz(A)
26 12288 | 8192 36608 24448
-7 49152 | 32768 | 146944 | 98048
-8 196608 | 131072 | 588800 | 392704
-9 786432 | 524288 | 2357248 | 1571840

NN DN

(nnz(M) is only for the symmetric part)

With the chosen boundary conditions, it is easy to verify that the
continuous solution v is u(x,y) = x.

We point out that the pattern of W is structurally equal to the
pattern AN—IAT.
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Two examples

name | # Iters | [[e®] | J[ATu® — bl | [lp —p™]2 | x(B)
h=2"" 10 2.8e-12 2.9e-16 4.1e-11 1.05
h=2"7 10 9.7e-12 3.0e-16 2.6e-10 1.05
h=28 10 2.5e-11 3.0e-16 7.9e-10 1.05
h=2"9 10 2.9e-10 2.8e-16 1.3e-08 1.05

Poisson with mixed b.c. data and RTO problem results (d =5,
7 =107%).
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Lecture on inf-sup
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inf-sup

Let $1 and $> be two Hilbert space, and $7 and $3 the
corresponding dual spaces. Let

a(u,v): H1 x H2 — R

alu, v
SUP e, SUPyes, M <G Vu,€9H1,VveN
1 2
. a\u, v
infues, SUPyes, M) > G VYueNH,VveEN
1 2

be continuous bilinear forms with ||a|| the corresponding norms.
Given f € % , we seek the solutions u € $7 of

a(u,v) = (f,V)g19, Vv E N (3)
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inf-sup

Theorem. The inf-sup condition is equivalent to

Vv € $Hdu € H1 s.t.
a(u,v) > allv[|3, and ||ulls, < allvils,-

IF $1 = $> THEN the inf-sup is the coercivity condition

89 / 215
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inf-sup

Solve ( we assume that we have approximate the Hilbert spaces
with finite dimensional ones)

Au=f
given
-
A
max WAV < G (sup-sup)
weR” \{0}veR”\{0} [v][ml[wllm
T
A
min W AvY > G (inf-sup)

weR” \{0}veR"\{0} [vnllw]ln

Note: ||v4|lss, = [[v||n defines the spd matrix H.
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inf-sup

Let $ and B be two Hilbert spaces, and $* and B* the
corresponding dual spaces. Let

a(u,v): H xH—R b(u,q) : H xP—R
la(u, V)| < llall ullg Ivlls VueHTYveshH
b(u, @)l < [[b] lulls lallp VueH,VgeP

be continuous bilinear forms with ||a|| and ||b|| the corresponding

norms. Given f € $* and g € *, we seek the solutions u € §) and
p € B of the system

a(u,v)+b(v,p) =(f,v)gr YVveEH (3)
b(u, q) = (& )y VaeP.
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inf-sup
We can introduce the operators .#, </ and its adjoint .&7*
M H =, (Mu,Vgews =a(u,v)  Yu€ENVVESDN
d* . oH =P, (@, q)pxp = b(u,q) YueHVgeP
o : ‘13—”3*7 <V>Mp>f)><5’)* = b(vap) VvenvpeP

and we have

(o *u, Q) xp = (U, 7 q) 55+ = b(U, q).

In order to make the following discussion simpler, we assume that
a(u, v) is symmetric and coercive on )

0 < xallulls < a(u,u).

However, Brezzi:1991 the coercivity on the kernel of &7 *,
Ker(27*) is sufficient. We will also assume that 3xo > 0 such
that
b(v, q) -
sup ——— = xol|qllp\ker(r) = X0 | _inf |lg+ qollg| -
ves [Ivils Il wer e qoEKer(<7) | v
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inf-sup

Under these hypotheses, and for any f € $* and g € Im(&/*)
then there exists (u, p) solution of saddle problem: v is unique and
p is definite up to an element of Ker(a/).
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inf-sup

Remember that

(o *u, q)ypexsp and (v, o p)gxs = b(v, p)

Then, we solve
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inf-sup and Mixed finite-element method

Let now 5 — $ and Py, — P be two finite dimensional subspaces
of  and PB. As for the problem (2), we can introduce the
operators @, : P — H} and Ap; Hp — H},. We also assume that

Ker(a?h) C Ker(</)
b(vh, gn)

[valls,
Xn 2 X0 > 0.

SUPv,e9, 2 Xn”qh”‘ph\Ker(;z{h)
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inf-sup and Mixed finite-element method

Under the hypotheses of inf-sup, we have that
A(up, pn) € H x Py, solution of

a(un, V) + b(vh, pn) = (. Vh)ar.6,  YVh € Hh
b(un, qn) = (& an)pr.3,  Van € Ba-

and
lu—unllg + P — Pallg\ker(a) <
k| inf ||lu— vyl + inf — ),
(ot o= vl + i, 1o asly

where k = &(||a|[, ||b]|, x0, x1) is independent of h.
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inf-sup and Mixed finite-element method

Let {¢i};_1, m be a basis for H and {¢);};,_;  be a basis for
PBp. Then, the matrices M and N are the Grammian matrices of
the operators .# and <7. In order to use the latter theory, we need
to weaken the hypothesis, made in the introduction, that A be full
rank. In this case, we have that
» s elliptic singular values will be zero;
» however, the G-K bidiagonalization method will still work and,
if Aqy # 0, it will compute a matrix B of rank less than or
equal to n —s.
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inf-sup and Mixed finite-element method

On the basis of the latter observations, the error ||e(%)||y can be
still computed. Finally, we point out that for h | O the elliptic
singular values of all A € R will be bounded with upper and
lower bounds independent of h, i.e.

Xo < op, <o < o1 < Jal.

91 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Generalized SVD

Given g € 9t and v € M, the critical points for the functional

viAq
lalln [[viim

are the “elliptic singular values and singular vectors” of A.
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Generalized SVD

Given g € 9t and v € M, the critical points for the functional
viAq
lalln ([v]lm

are the “elliptic singular values and singular vectors” of A.
The saddle-point conditions are

{ Aq,- = U,'MV,' V,-TMVJ' = 5,'_,'
ATV,' = a,-Nq,- q,-Tquzé,-j

01>02>--2>20,>0
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Generalized SVD

Given q € 9t and v € M, the critical points for the functional

viAq
lalln [lviim

are the “elliptic singular values and singular vectors” of A.
The saddle-point conditions are

)

Aq,- == U,'MV,' V-TMV_,' == 5,'_,'
ATV,' = o;Nq; q,.Tqu = 5U

01>022>--2>20,>0

The elliptic singular values are the standard singular values of
A =M"Y2AN"1/2, The elliptic singular vectors q; and v;, i=1,...,n
are the transformation by M~1/2 and N—1/2 respectively of the left and
right standard singular vector of A.
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Quadratic programming

The general problem

1 5 T
min —w' Ww —g'w
ATw=r 2 &

where the matrix W is positive semidefinite and
ker(W) Nker(AT) = 0 can be reformulated by choosing

M=W +vANIAT
u=w-Mlg
b=r—-A"Mlg.
as a projection problem
. 2
min |ju
min ully
If W is non singular then we can choose v = 0.
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:

BEIES
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Lecture on Golub-Kahan
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Elliptic SVD

Given g € 9t and v € M, the critical points for the functional

viAq
lalln [[viim

are the “ELLIPTIC singular values and singular vectors” of A.
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Elliptic SVD

Given g € 9t and v € M, the critical points for the functional

viAq
lalln [lviim

are the "ELLIPTIC singular values and singular vectors” of A.

The saddle-point conditions are

{ Aq,- = U,'MV,' V,-TMVJ' = 5,'_,'
ATV,' = a,-Nq,- q,-Tquzé,-j

01>02>--2>20,>0
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Elliptic SVD
Given q € Mt and v € N, the critical points for the functional
viAq
lalln [lviim

are the "ELLIPTIC singular values and singular vectors” of A.
The saddle-point conditions are

)

Aq,- == U,'MV,' V-TMV_,' == 5,'_,'
ATV,' = o;Nq; q,.Tqu = 5U

01>022>--2>20,>0

The elliptic singular values are the standard singular values of
A =M"Y2AN"1/2, The elliptic singular vectors q; and v;, i=1,...,n
are the transformation by M~1/2 and N—1/2 respectively of the left and
right standard singular vector of A.
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Quadratic programming

The general problem

1 5 T
min —w' Ww —g'w
ATw=r 2 &

where the matrix W is positive semidefinite and
ker(W) Nker(AT) = 0 can be reformulated by choosing

M=W +vANIAT
u=w-Mlg
b=r—-A"Mlg.
as a projection problem
. 2
min |ju
min ully
If W is non singular then we can choose v = 0.
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:

BEIES
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Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m x n matrix are presented. All of
them can be theoretically applied to A and their generalization to
A is straightforward as shown by Bembow (1999). Here, we want
specifically to analyse one of the variants known as the

" Craig"-variant (see Paige Saunders (1982), Saunders
(1995,1997)).
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Generalized Golub-Kahan bidiagonalization

AQ = M\?['g] VIMV =1,
ATV = NQ [éT;o} A'NGQ =1,
where
&, 0 0 0
Bo  do 0 0
& .
0 ﬁnfl Op—1 0
0 0 Bn Qn
L 0 0 0 BnJrl
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Generalized Golub-Kahan bidiagonalization

AQ = Mv[0 ViMV =1,
ATV = NQI[BT;0] Q'NQ =1,
where
a; B O 0
0 a2 /2 0
B: ’ ... ..
0 0 Ap—1 anl
|0 0 0 |
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Algorithm

The augmented system that gives the optimality conditions for

MINATy—p HU|||2v|
M A ul |0
AT 0 pl | b

can be transformed by the change of variables

{u:Vz
P = Qy
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Algorithm

In 0 B VAl 0
0 lpm—pn O z | = 0
B 0 0 y Q"b
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Algorithm
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Algorithm

o o] [ lan )

Q"b = elb]n

the value of z; will correspond to the first column of the inverse of
B multiplied by ||b||n.
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Algorithm

Thus, we can compute the first column of B and of V:
a1Mv; = Aqq, such as

w = M_lAql
a; =w! Mw = wAq;

vi =w/ /a1
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Algorithm

Thus, we can compute the first column of B and of V:
a1Mv; = Aqs, such as

w=M"1Aq;
a1 =w! Mw = wAq;
vi =w/\/a1.

Finally, knowing gq; and v; we can start the recursive relations

101 / 215

gi+1 =N (ATv; — a;Ng;)
Bir1 =g Ng

di+1 =8 \/Bit+1
w=M"1(Aqg;;1 — Bir1MV))
Qg1 = WTMW

Viy1 = W/\/Oéi+1-
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

k
u(k) = Vka = ZCJ‘VJ'.

j=1
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u

Thus, the value of u can be approximated when we have computed
the first k columns of V by

k
U(k) = Vka = ZQVJ‘.

j=1

The entries (; of zx can be easily computed recursively starting

with Ib]
N
G=-
aq
as 5
CI'+1:_ l CI I:]-a , N
i1
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p

Approximating p = Qy by p() = Quyx = Zj-;l 1;q;, we have that

Yk = —B;lzk.

103 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

p

Approximating p = Qy by p (k) = = Qyk = Ej-(zl 1;q;, we have that

Yk = —B;lzk.

Following an observation made by Paige and Saunders, we can
easily transform the previous relation into a recursive one where
only one extra vector is required.
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p

Approximating p = Qy by p(K) = Quyx = Z};l 1;q;, we have that

yk:—lezk.
~1o7\" -TQT
From p(¥) = —Q,B P zk——(Bk Qk) zyand D, =B, "Q,
g = ¥ =Pl (dozo)
Q;

where d; are the columns of D.
Starting with p(l) = —(1d; and ul®) = (1v1

pitl) = p) — (iadia e
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Stopping criteria

Ju—u®)2, = |e®2, = ZC H [zok]H;

j=k+1
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Stopping criteria

Ju—u®2 = e} = Z 5 _H [Zok]Hi'

IAT U —bln-1 = [Brra Gl < o1lCe] = [|Al2]Cl.
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Stopping criteria

) = ey = S @ =z kale

j=k+1

IATu®) — bl[y-1 = [Brra Gl < 1]Cil = [1A]]2]Ckl.

Ip =PI = HQB_I <Z_ [ o D HN HeanH
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Error bound
Lower bound We can estimate [|e(¥)||2, by the lower bound

k+d+1

Ga= > G<leMi.

j=k+1

Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

Gas<T Y G<7luls

j=1
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Error bound
Lower bound We can estimate [|e(¥)||2, by the lower bound

k+d+1

Ga= > G<leMi.

j=k+1

Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

Gas<T Y G<7luls

J=1

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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Error bound

Theorem
Under previous hypotheses, and denoting by u* one of the iterates
of Algorithm Craig for which ||e(¥)||m < T, we have

lu—u*lls + llp— P llp\ker(wr) <
K| inf |lu—vp|lg + inf — +7](3
<vhem Ju=vall + inf o= anli +7) (3

where u* = > piut € Ny, pF = Zjnil gb;p}f € Py and K a
constant independent of h.
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Lecture on SQD
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Symmetric Quasi-Definite Systems

SO R ESPENE

v

Interior-point methods for LP, QP, NLP, SOCP, SDP, ...
Regularized /stabilized PDE problems

v

v

Regularized least squares

v

How to best take advantage of the structure?
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Main Property

Theorem (Vanderbei, 1995)
If K is SQD, it is strongly factorizable, i.e., for any permutation

matrix P, there exists a unit lower triangular L and a diagonal D
such that PTKP = LDL".

» Cholesky-factorizable
» Used to speed up factorization in regularized least-squares
(Saunders) and interior-point methods (Friedlander and O.)

» Stability analysis by Gill, Saunders, Shinnerl (1996).
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Centered preconditioning

M- 32 M A
N-:| |AT =N

which is equivalent to

M2
N—2

(@)

m
N-ZATM 2 1,
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Centered preconditioning

M- 32 M A
N-:| |AT =N

which is equivalent to

M2
N—2

(@)

Theorem (Saunders (1995))

Suppose A = M~2AN~: has rank p < m with nonzero singular
values o1, ...,0p,. The eigenvalues of C are +1, —1 and

+V1l+o, k=1,...,p
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Symmetric spectrum and Iterative methods

A symmetric matrix with a symmetric spectrum can be transform
preserving the symmetry of the spectrum in a SQD one.

Moreover, Fischer (Theorem 6.9.9 in “Polynomial based iteration
methods for symmetric linear systems”) Freund (1983), Freund
Golub Nachtigal (1992), and Ramage Silvester Wathen (1995) give
different poofs that MINRES and CG perform redundant iterations.
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

MINRES
SYMMLQ
(F)GMRES??
QMRS?77?

v

v

v

v
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

MINRES
SYMMLQ
(F)GMRES??
QMRS?77?

v

v

v

v

Fact: ... none exploits the SQD structure and they are doing
redundant iterations
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Related Problems: an example
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Mario Arioli
Related Problems: an example

M Al (x| |b

AT —N||y| |0
are the optimality conditions of

2 1 2
w1 | ER B -S| W I (A ER )
yeR” 2 I 0 E_;l B yeR" 2 0 N1 | 0
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Related Problems: an example

ol

are the optimality conditions of

A b] |
min = y — = min 3
yERm2 |:I:| |:0:| 5;1 yERm2
or of

minimize 3((x( + v/

113 / 215
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Some properties of SQD matrices

Let us denote the Cholesky factors of M and N by R and U (upper
triangular matrices).

M ] _[RTR s
[T ] R

We observe that

M A7 [RT 0][lm A][R 0] 575
c=lar A=l wflar A5 o) e
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Some properties of SQD matrices

Let us denote the Cholesky factors of M and N by R and U (upper
triangular matrices).

M ] _[RTR s
[ ] R

We observe that

M A7 [RT 0][lm A][R 0] 575
C_[AT —N]_{O UT} {AT _|n] [0 u}_R R,

H'C=R7'CR
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Some properties of SQD matrices

By direct computation it is easy to prove that

EQ o |m+AAT 61

I
O

D,

|n+/3.7/1]
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Some properties of SQD matrices

By direct computation it is easy to prove that

~ I, + AAT D, ~
cc=|" | = ~ | =D.
[ |n+ATA] D,
C! = plc=cp !,
¢b - €*=DC;
_ ~ o~ M+ AN—IAT
1 _ T _ _
CH!C = R DR_D_{ N+ATM—1A]
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Some properties of SQD matrices
By direct computation it is easy to prove that

~ | —|—AAT 61 ~
2 m
= ~ ~ = ~ = D

¢ [ I,,+ATA] D>
c! = p'c=cp
CD = C®=DC;
_ S M+ ANIAT
1 _ T _ _

CHlC = RDR_D_[ N—|—ATM1A}

(H'Cc)>=R!C?’R=R'DR=H'D,
(H'C)’ =R !C*R=H!CH'D = H'DH'C
C'=D'CH'=H'cD™"
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Some properties of SQD matrices

D and C commute.
Both matrices can be simultaneously diagonalized by the
generalized eigenvalues of

Cz= )\J'HZ,

where the ), j =1,..., p = rank(A) are the same eigenvalues of
C
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Krylov subspaces

Hereafter we will denote by
Ki(C,z) = Range{z, Cz,C%z,...,C 1z, Eiz}

the Krylov subspace generated by C and a vector z. We point out
that K;(C, z) are also the Krylov subspaces used to define the
Lanczos algorithm applied to C symmetrically preconditioned by R.

Ki(H1C,w) = R'K;(C,z), where w = Rz.
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Krylov subspaces

C?k = DX
C2k+1 CDk ch

Therefore,

Kk(C,z) = K|x/2/(D,2) + Kpx/21_1(D, C2)

= K|/2(D,2) + CKp42)-1(D, 2).
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Krylov subspaces

Finally, denoting by D1 and D the diagonal blocks of D, i.e. we

have: . -
o |Z o K,-(Dl,z ) NO
Ki(D. [ZQ]) B [ 0 } @ [K,-(Dz,zZ)
and
~~ ~ [ K;(Dy,2%) AK;(D5, z2)
CK, D7 — N ] ~7 1 = 9
( [22}) ATK,-(Dl,zl) @ —K,~(D2,22)
B K;(Dy,2%) o K;(D1, Az?)
~ |Kj(D2,ATZY) —K;(Da, z%)
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Generalized Golub-Kahan bidiagonalization

TWO VARIANTS
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Generalized Golub-Kahan bidiagonalization

AQ = M\?['g] VIMV =1,
ATV = NQ [éT;o} A'NGQ =1,
where
&, 0 0 0
Bo  do 0 0
& .
0 ﬁnfl Op—1 0
0 0 Bn Qn
L 0 0 0 BnJrl
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Generalized Golub-Kahan bidiagonalization

AQ = Mv[0 ViMV =1,
ATV = NQI[BT;0] Q'NQ =1,
where
a; B O 0
0 a2 /2 0
B: ’ ... ..
0 0 Ap—1 anl
|0 0 0 |
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Generalized Least Squares

Normal equations: (ATM~*A + N)y = ATM~!b.
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Generalized Least Squares

Normal equations: (ATM~*A + N)y = ATM~!b.
At k-th iteration, seek y = yy 1= \"/kyk:

(B/B, + 1)yx = B] res
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Generalized Least Squares

Normal equations: (ATM~*A + N)y = ATM~!b.
At k-th iteration, seek y = yy 1= \"/kyk:

(B/B, + 1)yx = B] res

1 ék]—_[ﬂlel}
ma 4] 178

NI

min

2

121 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Generalized Least Squares

Normal equations: (ATM~*A + N)y = ATM~!b.
At k-th iteration, seek y = yy 1= \7kyk:

(B/B, + 1)yx = B] res

e .
1 Bk]—_[ﬂlel}
or: _
| Bi| [Xk| _ [bre1
B 1] [y% [0 ]°
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2
min

Generalized LSQR
-
yeR* | 0

Solve
by specialized Givens Rotations (Eliminate I first and Ry will be
upper bidiagonal)

<

N|—=

2
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2
min

Generalized LSQR
-
yeR* | 0

Solve
by specialized Givens Rotations (Eliminate I first and Ry will be

upper bidiagonal)
Rl [0«
[o)s-[]

N|—=
<

2

2
min %
— k
yeR

2
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2
min

Generalized LSQR
-
yeR* | 0

Solve
by specialized Givens Rotations (Eliminate I first and Ry will be
upper bidiagonal)

N|—=
<

2

2

Rl [0«
o)y [5]
As in Paige-Saunders '82 we can build recursive expressions of yx

Ykt+1 = Yk + dkdk (Dk = \N/kﬁf)

and we have that

m m
<112 2 - 2 2
19/ /n+arm-1a = Z‘éj and ||y — yllnyarm-1a = E @i
J=1 j=k+1

min %
- k
yeR

2
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Error bound
Lower bound We can estimate ||y — yk||2N+ATM—1A by the lower
bound
k+d+1
2 2 - 2
fk,d = Z 9; < 1y — yk‘|N+AT|\/|—1A-
j=k+1

. k
a.nd I¥/1jsamm-1a bY the Iower. bound Y77, 7.
Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

fkd<7 Z §bj <7’Z¢)2 <7'||YHN+ATM 1A°
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Error bound

Lower bound We can estimate ||y — y;<||2,\|+ATM_1A by the lower
bound
k+d+1

2 2 = 2
fk,d = Z ¢j < Iy — YkHNjLATMflA-
j=k+1

P k 2
a.nd I¥1[N aTm-1a DY the Iower. bound >, ¢7.
Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

fkd<7 Z §bj <TZ¢ <7'||YHN+ATM 1A°

Upper bound Despite belng very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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Generalized CRAIG

min S(IlyIR + Ix[3) st Ay+Mx=b.
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Generalized CRAIG

min S(IlyIR + Ix[3) st Ay+Mx=b.

At step k of GK bidiagonalization, we seek

X =~ Xj = UgXy, and y ~ yr = Viyk.
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Generalized CRAIG

min S(IlyIR + Ix[3) st Ay+Mx=b.

At step k of GK bidiagonalization, we seek

X =~ Xj = UgXy, and y ~ yr = Viyk.

min 31917+ IRI%) st Begi + % = frex
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Generalized CRAIG

min S(IlyIR + Ix[3) st Ay+Mx=b.

At step k of GK bidiagonalization, we seek

X =~ Xj = UgXy, and y ~ yr = Viyk.

min S(I31* + %) s.t. BeJx + %k = fres

-

or:
2

min %
k
yeR

2
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem

s b1
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem

e By [X| _ [frer
BZ— —le | | Yk 0
Following Saunders (1995) and Paige (1974), we compute an LQ

factorization to the k-by-2k matrix [By I,] by applying 2k — 1
Givens rotations that zero out the identity block.
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem
e By [X| _ [fres
Bl ] 3« 0

[Bk Ik] QZ— = [ék 0] Q/Z—Qk =1

where
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Generalized CRAIG

B1e1 = By + Xx = [Bk /k] [;k} =
B oo [Y] - 8 o) [3] -8z

for some zx € RX: z, = (C1y--05Ck)
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Generalized CRAIG

prer = Biyk + Xk = [Bi k] [zk} =
5 Ye| _ 1A Z| _B.3
[Bx 0] Q« [ik] = [Bx 0] [0} = By,
for some z, € Rk Ze = (C1y- -+, Ck)

G1=PB1/d1, (1= —Bi1G/aive, (i=1,...,k—1).
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Generalized CRAIG

Solving for x, directly, and bypassing Xx, may now be done. By
definition,
x, = Urx, = UkB;TEk.

Since 3;T is upper bidiagonal, all components of é;TEk are
likely to change at every iteration. Fortunately, upon defining
D, = ka’);T, and denoting d; the i-th column of Dy, we are
able to use a recursion formula for x provided that d; may be
found easily. Slightly rearranging, we have

B.D] = U]
and therefore it is easy to identify each d;—i.e., each row of

DZ—recu rsively.
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Generalized CRAIG

Solving for x, directly, and bypassing Xx, may now be done. By
definition,
XK = Uk)_(k = UkB;TEk.

dii=uy/é1, dit1 = (Ui — Bipad) /i, (i=1,...,k-1).
This yields the update

X1 = Xk + Cry1dit1

for Xg+1.

127 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Generalized CRAIG: errors bound

Let I§k be defined as above and Dy := Uké;T. For k=1,...,n,
we have
D/ (ANT!AT + M)D; = I,.

In particular,
k
Xe=)_(d;
Jj=1

and we have the estimates

k
‘|kaiN*1AT+M = ZC?? (43)
i=1
n
2 2
[x* — XkHAN—lATH\A = Z Gis (4b)
i=k+1
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Generalized CRAIG: errors bound

As for generalized LSQR, we can estimate the error using the
windowing technique and we can give a lower bound of the error by

k+d+1

2 2 2

€id = Z G < Ix" - kaANflAT_FM
Jj=k+1

and we can estimate ||x*||an-1a7m by the lower bound Z};l G-
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Generalized CRAIG: errors bound

As for GLSQR. If we know a lower bound of singular values we can
use an approach inspired by the Gauss-Radau quadrature algorithm
and similar to the one described in Golub-Meurant (2010).
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Other variants:

Generalized LSMR

minimize %HN*%(ATMflb — (ATM'A + N)y)) 2.
ye

Error bounds similar to the ones given above exist for the MR
variants
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Other variants:

Generalized LSMR
Generalized Craig-MR

Error bounds similar to the ones given above exist for the MR
variants
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Numerical experiments

We will focus on optimization problems:

minigrjze g x+ %XTHX subject to Cx =d, x > 0,
Xe

where g € R" and H = H™ € R™" is positive semi-definite, and
result in linear systems with coefficient matrix

H+X1Z+p CT
C —5l

where p > 0 and § > 0 are regularization parameters.
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Numerical experiments MINRES

This is a blow-up of some iterations

150

100

132 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Numerical experiments GLSQR

Regularized Least-Squares Objective Residual of Normal Equations

10° 10°
— G-LSQR
G-LSMR 10
10* 10
10°
10° 10t
10"
\
10 10° \\
\\\
10° \\
' 9
10 00 20 30 60 80 100 120

Figure : Problem DUAL1 (255,171).
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Numerical experiments GLSQR

Regularized Least-Squares Objective Residual of Normal Equations

107

10 10°

Figure : Problem MOSARQP1 (5700, 3200).

134 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014

How to choose d?

problem m n
duall 255 171
stcqpl 12291 10246

gpcboeil 1355 980
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Numerical experiments GCraig

d=5,15

CRAIG: Direct Errors and Estimates

Mario Arioli

CRAIG: Direct Errors and Estimates

10 10°
100 — d=5 10 — d=5
10t — d=15 10t — d=15

N — Actual 10° — Actual
10°

N 107
10 102

-
10 107
10° 10
10° 10°
107 10°
108 107
10° 10°

9
10 10

10 1010
10" 101
107" 1012
1013 107
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CG?
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Numerical experiments CG

d=5,15

D-Lanczos

D-Lanczos

10°

10°
108 — Actual
10
10°
10!

10°

-10!
-10°
10
10
-10°
-10°

Figure : Problem DUAL1 and MOSARQP1 (5700, 3200).
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Numerical experiments CG

d =515

W D-Lanczos 0 D-Lanczos
10°
10°
10°
. — Actual
1
o 10
10°
107 10t
10t
0
10° °
0 -10°
10? |
10° -10*
-10 -10°
10°
o s
20 10 20 30 20 50 0 10 10 20 30 20 50

Figure : Problem Stokes (IFISS 3.1): colliding and cavity
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Conclusions

» Preconditioning —> Norms i.e. different topologies!!
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Conclusions

» Preconditioning —> Norms i.e. different topologies!!

» Nice relation between the algebraic error and the
approximation error
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Conclusions

» Preconditioning —> Norms i.e. different topologies!!
» Nice relation between the algebraic error and the
approximation error

» A. and Orban " Iterative methods for symmetric quasi definite
systems” Cahier du GERAD G-2013-32
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Lecture on linear regression and LS
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» QR algorithm
» Sparse least-squares problems

» Rounding error analysis
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Elementary matrices

» Givens transformation:

1
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Elementary matrices

» Givens transformation:

1

» Householder transformation

.
H=1-2Y
yTy
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Givens transformation

u € R” find n— 1, G; such that

Gn—l ce G1u = ||u|]2e1
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Givens transformation

u € R” find n— 1, G; such that
Gn—l ce G1u = ||u|]2e1

Ifn=2

5 e vl

—-s c y
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Givens transformation

u € R” find n— 1, G; such that
Gn—l ce G1u = ||u|]2e1

e

X Y
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Householder transformation

i
(1= 207 Ju = =ull2e:
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Householder transformation

i
(1= 207 Ju = =ull2e:

y=u + |]u||2e1
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Householder transformation

i
(1= 207 Ju = =ull2e:

y=u + |]u||2e1

y = u + sign(uy)||ul|2e1

to avoid cancellation
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Householder transformation:example

o (1]

H'H = HHT =1
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Product of Householder transformations

Let H; and H, be two Householder matrices
Hi = 1—yy’ Ho =1—ww’

Iyl = V2 wll2 = V2

HiHy = (I—yy")(1—ww")
= I—ny—wa+nywa

e IFS

= 1-YTY'
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Product of Householder transformations

Let H; and H; be two products of Householder matrices

Hi = 1-YT,Y’™ H, =1-WT,W'

HiH, = (I-YTY)(Hy =1-WT,WT')
= 1-YT,Y —WT,WT + YT, Y 'WT,W’™
T, -T.YTWT, ] [ ‘' }

= 1-ly Wil T, w7

= 1-Y3T3Y]

BLAS-3 Operations in applying | — Y3T3Y3T to a matrix.
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Least Squares

min ||Ax — b||»

|| ®||2 invariant for orthonormal transformation

min [|Ax — b||2 = min||H(Ax — b)||2
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Error Analysis in mixed precision arithmetic

[fI(H;) = Hill[F < e+ O(?)

Let C € R™". We first compute B = H;C and let B = fI(H,C)

1B - BJ|F

[[fI(fI(H;)C) — fI(H;)C] + (fI(H;)C — H,C)|[|¢
|[fI(fI(H;)C) — fI(H;)C||F + [|(fI(H;)C — H;C)||r
[IE[lF + [[fI(H;) — HillF[Cl|F

IN

IEllF < €l|Cl[F + O(?)
1B =Bl < aiel|CllF + O(?)
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Error Analysis in mixed precision arithmetic

Al=A A =HA, i=1..m

H; produces zeros in positions i + 1 through m of column i of HiA;
The computed quantities will be

Al=A A, =AFA) i=1...,m

H, = fI(H;) where H; (orthonormal) would have produced zeros in
positions i + 1 through m of column i of H;A;

IH/A; — fI(H;A)|F < coe||Aisa]|F + O(€%)
[|Am —Hp .. HiA||f < cime||A]|F + O(€?)
" R
A, =
o)
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Error Analysis in mixed precision arithmetic

Exists an orthonormal matrix Q = H,, ... H; and a matrix E such
that

A+E = Q[R]
IEl[r < com||Al|re + O(%)

The computed solution X of the least-squares problem is the exact
solution of the problem

miny [|(A+E1)x — (b +g)[l2 = [[(A+E1)x — (b+g)l|2
IEllr < csm||Allre + O(e?)
lgllz < cm||bll2e + O(€%)
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Linear regression

For any random vector z, we denote by E[z] its mean and by
V(z] = E[(z — E[z])(z — E[z])"] its covariance matrix.

The notation z ~ N (z, C) means that z follows a Gaussian
distribution with mean z and covariance matrix C.
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Linear regression

Let A € R™"  m > n, with Rank(A) = n. We consider the linear

regression model
y = Ax + e,

where E[e] =0 and V[e] = 02/,. We point out that A defines a
given model and x is an unknown deterministic value.
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Linear regression: Gauss-Markov Theorem

The minimum-variance unbiased (MVU) estimator of x is related
to y by the Gauss-Markov theorem.
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Linear regression: Gauss-Markov Theorem
For the linear model the minimum-variance unbiased estimator of x
is given by
x*=(ATA) ATy,
V[x*] satisfies V[x*] = ¢2(ATA)~L. If in addition,
e ~ N(0,0%ly), m> n, and if we set
5 1

_ 2
8 = ——|xl,

where r = y — Ax™*, we have for our estimator of x
x* ~ N (x,02(ATA)TY),

and for s2, our estimator for o2,

2
o
$2 ~

2 [e—
P (m—n).
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Linear regression: Gauss-Markov Theorem

Moreover, the predicted value § = Ax* and the residual  are
independently distributed as

§ ~ N (Ax,0’A(ATA)IAT)

and
v~ N(0,0%(1- A(ATA)IAT)).
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Linear regression

Let 3 be a stochastic variable such that
55 ~ N(0,72A(ATA)IAT).

Under the Hypotheses of Gauss-Markov and assuming that § and
0y are independently distributed, we have

§+ 05 ~ N (Ax, (7> + o?)A(ATA)IAT).
Moreover, we have that

19112 ~ 72X%(n).
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Linear regression: a perturbation Theorem
Let 0§ be a stochastic variable such that

5% ~ N (0,72A(ATA)IAT).

Under the hypotheses of Gauss-Markov Theorem and assuming
that ¥ and 6§ are uncorrelated, there exist two stochastic variables

ox* NJ\/'(O,Tz(ATA)‘l),
Sy ~ N(0,721,),
such that
1. §+ 0y = A(x* + 0x¥),
2. x* 4+ 6x* is MVU estimator of x for
y+oy=Ax+@& @& NN(O,(O’2 —|—7'2)|m),
3. and

1
-2 * *\ 112
= — y+5y—Ax —|—5X

$ m I'IH ( )H27

/ is the estimator for p? = 0 + 72 with §2 ~ 2 +T, X*(m — n).
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Least squares problem

The minimum-variance unbiased (MVU) estimators of x and o2 are
closely related to the solution of the least-squares problem (LSP),

min [ly — Ax|[3

where y is a realization of y. The least-squares problem (LSP) has
the unique solution

x* = (ATA)_lATy,

and the corresponding minimum value is achieved by the square of
the euclidean norm of

r=y—Ax"=(1-P)y

where the matrix | =P =1 — A(ATA)"!AT is the orthogonal
projector onto Ker(AT) and P is the orthogonal projector onto
Range(A).
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Least squares problem

We remark here that the solution of LSP is deterministic and,
therefore, supplies only a realization of the MVU x* and of s the
corresponding estimator of o2.

The vector x* is also the solution of the normal equations, i.e. it is
the unique stationary point of ||y — Ax||3:

ATAx* =ATy.
We will denote its residual in the following by

R(x) = AT(y — Ax)

159 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Least squares problem

Given a vector X € R", the following relations are satisfied:

(1-P) (y—Ax) = (1-P)y,
(y—Ax) = (y—Ax*)+A(ATA)!AT(y — AX)
= (y—Ax*)+A(ATA)IR(%),
and, then, we have

ly — A3 = [ly — Ax*|[3 + [|R(X)|[{a7a)-1-

owing to the orthogonality between y — Ax* and A(ATA)~1R(X).
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Least squares problem

From the orthogonality of the projector P, the following are

satisfied
y = Py+(I-P)y,
, HYI@ = HPYH§+H(2'—P)YH§, ,
Iyll3 = 1IPyl[5 = [I(1=P)yl5 = [ly — Ax*[3.

Moreover, we have
Py[2 =yTA(ATA) *ATy = x*TAT Ax*
IPy[lz =y y :
and, then we conclude that

[Iy115 =[x Ilara = 11 = P)yll3 = lly — Ax"[[5.
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Least squares problem

Finally, it is easy to verify that, given X as an approximation of x*,
oy = —A(ATA)1R(x)
is the minimum norm solution of
mvjn ||w] |3 such that ATAX = AT (y +w).
Moreover, using R(X) = AT(y — Ax) = ATA(x* — %), we have

16Y113 = lIR()|[{ara)-1 = X" = Xl[Z7a-
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Probabilistic tests and perturbation theory

We have that expression

16Y113 = lIR(X)|[{ara)-1 = X" = XI[Z7a-

gives a useful key to understand our stopping criteria and their
probabilistic nature. If y can be seen as a realization of a
stochastic variable

55 ~ N (0,7°P)

then, based on the perturbation Theorem, the values X and
¥ = y — AX are realizations of the stochastic variables associated to

¥+ 0y = AT 8, &~ N0, (02 + 7)),
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Probabilistic tests and perturbation theory

We have that expression

16112 = [[R)|[{aa)-1 = X" = Xl[z7a-

gives a useful key to understand our stopping criteria and their
probabilistic nature. If y can be seen as a realization of a
stochastic variable

5§ ~N(0,7°P)

then, based on the perturbation Theorem, the values X and
¥ = y — AX are realizations of the stochastic variables associated to

y+ 0y =Ax+& &~ N(0, (%4 7)n),

In practice, we can only check the plausibility of this hypothesis
using statistical tests. Fixing some probability threshold 7, we
check if there is any statistical reason for refusing the previous

hypothesis, i.e. the probability we are wrong is very low (< 7).
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y? distribution test

Jdy is a projection onto Range (A). If dy is a realization of a
stochastic variable §§ satisfying

min ||w||3 such that  ATAx=AT(y +w).
w

then ||0y||3 is a realization of ||05(|3 ~ 72x?(n).
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y? distribution test

Therefore, we consider that dy is a sample of the stochastic
variable ¥, if for some small enough 7,

Probability (][5 5 > [|0y(3) > 1 - n,

5112
where we assume that the random variable Hi% follows a centered
x? distribution with n degrees of freedom.
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y? distribution test

Thus, we can formulate our criterion as

px<||5y||27> pmbabmty<”5y| _|5Y|’2>§n7 -

72 72

where, since §¥ is a Gaussian distribution with covariance matrix
A(ATA)TIAT, the value of p, (., n) is the cumulative distribution
function of the x? distribution Abramowitz-Stegun (26.4): The
probability that X? = F X2 with 1/ degrees of freedom

X; ~ N (0,1), is such that X2 < 2

2
t

1 Xt
Prob(xz\y):[z'fﬂr(g)} /O t5Le3 dt.
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y? distribution test

Moreover, the corresponding X is the exact solution of
ATAx = AT (y + dy).

Thus, we can interpret X as a realization of the stochastic variable
x* + dx* and AX as a realization of y 4+ dy: i.e. we have, with
probability 7, realizations consistent with the perturbed linear
regression problem, that, if we choose 72 < ¢, is only marginally
different from the original.
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Stopping criteria for CGLS

If we use the conjugate gradient method in order to compute the
solution, it is quite natural to have a stopping criterion which takes
advantage of the minimization property of this method and of the
stochastic properties of the underpinning problem
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Stopping criteria for CGLS

Mario Arioli

Set q(o) = z<0), Bo=0,1v9=0 x1 = R(D)Tz(o), and §_4 = oo.

k=0

while (&g, [r@|l2, v4, 72, 02)) > n do
k=k+1;
p = Aglk=1);

2
ak—1 = x«/llpll3:

Yk = 0k_1Xki Vk = Vk—1 + Pki
(PR St
R = Rk=1) _ o, ;AT 4k=1)

Solve Mz(K) = R(k);

x(K) =

Xki1 = RUDT 5(k) .
Bk = Xkt1/Xk:
gk = 2(k) qu(k—l);
if k > d then
k
bhmd = D Ui
Jj=k—d+1
else
Ek—d = o0;
endif
end while.

PCGLS algorithm Given an initial guess X(O), compute 0 = (y - AX(O)), RO = ATr(o), and solve Mz(®) = R(9),
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Y2 stopping criteria for PCGLS

To detect the convergence as early as possible and avoid
over-solving in the LSP, we consider a dy, with minimum
Euclidean norm such that x(K) exactly solves a LS problem. Using
the estimations we have

IF py (%,n) <n THEN STOP .
T
In order to have perturbations of ¥ that not distort excessively the

statistical properties of the original linear regression, we assume
that 72 < 2.
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Y2 stopping criteria for PCGLS

We re-iterate that y? test is a measure of the probability that the
numerical values computed at step k will be statistically equivalent
to those obtained solving an LSP related to a perturbed linear
regression model exactly where the statistical errors

e ~ N(0,(c% + 72)Ip), i.e. small value of 7 will indicate that the
probability of stopping at the wrong place is small.
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Y2 stopping criteria for PCGLS

We re-iterate that y? test is a measure of the probability that the
numerical values computed at step k will be statistically equivalent
to those obtained solving an LSP related to a perturbed linear
regression model exactly where the statistical errors

e~ N(0,(0? +7%)In), i.e. small value of i will indicate that the

probability of stopping at the wrong place is small.  In PCGLS,
we can choose

Z(‘Ekv ||r(0)H27 Vvazvgz) = Px (Ek(m—z_n)v n) .

T
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Choice of 1 and 72 for the x? and F-test stopping criteria

We seek choices of 77 and 72 that will depend on the properties of
the problem that we want to solve and, in the practical cases, we
would like 7 and 72 to be much larger than ¢, the roundoff unit of
the computer finite precision arithmetic.
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Choice of 1 and 72 for the x? and F-test stopping criteria

The choice of 7 is related to the probability the user subjectively
feels as adequate, i.e. he/she accepts that the probability of
choosing the wrong iterate is less than 7). In our experiments, we
chose n = 1078 which is quite conservative. This value is close to
the probability of winning the lotto.
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Choice of 1 and 72 for the x? and F-test stopping criteria

The choice of 72 is also related to a priori knowledge of the
statistical properties of the linear regression problem and in
particular to the user knowledge of a reliable value of o2 or of an
interval where o2 lies. We experimented with several values of 72.
The numerical results suggest that the choice 7 = o2 gives
reliable answers in the majority of our tests and they are always
consistent with the results of Theorem on perturbations. When o2
is approximated by its upper bound (||y||3 — vk)/(m — n) and the
dynamical choices are used 72 = (||y[|3 — vk)/(m — n) we can have
an early stop because (||y||3 — vk)/(m — n) is a poor approximation
of the true standard deviation. However, smaller values of T,f

(12 = 0.1(IlylI3 — vk)/(m — n) or 72 = 0.01(||y||3 — vk)/(m — n))
proved more robust and reliable. In these cases it would be useful
to have lower bound approximations of o2. Unfortunately, to
compute a lower bound of (||y||3 — vx)/(m — n) can be costly.
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Choice of 1 and 72 for the x? and F-test stopping criteria

The values of £, and vy are lower bounds respectively for the true
energy norm of the errors and the energy norm of the solution,
which are both independent of the preconditioner used. However, a
good preconditioner will help to reduce the delay factor d. i.e. we
will have better approximations at a cheaper computational cost.
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Data assimilation test

Data assimilation problems constitute an important class of
regression problems. Their purpose is to reconstruct the initial
conditions at t = 0 of a dynamical system based on knowledge of
the system’s evolution laws and on observations of the state at
times t;. More precisely, consider a linear dynamical system
described by the equation & = f(t, u) whose solution operator is
given by u(t) = M(t)up. Assume that the system state is observed
(possibly only in parts) at times {t;}", yielding observation
vectors {y,-},N:O, whose model is given by y; = Hu(t;) + €, where €
is a noise with covariance matrix R; = o21.
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Data assimilation test

We are then interested in finding vy which minimizes

N

1
5 > IIHM(t)uo — Yi||f?i—1-
i=0

We consider here the case where the dynamical system is the linear
heat equation in a two-dimensional domain, defined on
S = [07 1] X [07 1] by

(;;I:—Au in S, u=0 on 0S8y, u(.,0)=u in S,
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Data assimilation test

The system is integrated with timestep dt, using an implicit Euler
scheme. In the physical domain, a regular finite difference scheme
is taken for the Laplace operator, with same spacing h in the two
spatial dimensions. The data of our problem is computed by
imposing a solution wup(x, y,0) computing the exact system
trajectory and observing Hu at every point in the spatial domain
and at every time step. In our application, m = 8100,
n=900=30% dt=1, h=1/31, N =8 and

H = diag(1%°,215 ... n1®). The observation vector y is obtained
by imposing uo(x, y,0) = 7 sin(3x)(x — 1)sin(5y)(y — 1), and by
adding a random measurement error with Gaussian distribution
with zero mean and covariance matrix R; = ¢2l,, where ¢ = 1073,
In our numerical experiments, we use PCGLS without
preconditioner.
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Data Assimilation test: results

Our choice of not using a preconditioner is not optimal, however,
the choice of d =5 in this problem gives reliable answers and
stable behaviour of the stopping criteria.
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Data Assimilation test: results
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Lecture on LDL” multifrontal and GMRES and FGMRES
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Outline
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GMRES and FGMRES

Let ro = b — Axp and KCx(A, rp) be the usual Krylov space
GMRES

min Hro — AXH2 ro — AXkJ_A,Ck(A, ro)
XGXo+le(A,r0)
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GMRES and FGMRES

Let ro = b — Axg and ICk(A, rg) be the usual Krylov space
GMRES

min HI’O — AXH2 ro — AXkJ_A’Ck(A, I’o)
XEXO+Kk(A,r0)

GMRES Left preconditioning

(LA, L"1b) —> (A,b)

—1pae -1
L Ax=L""b {ICk(L_lA,L_lro)—HCk(A,ro)

changes the norm.
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GMRES and FGMRES

Let ro = b — Axg and ICk(A, rg) be the usual Krylov space
GMRES

min HI’O — AXH2 ro — AXkJ_A’Ck(A, I’o)
XEXO+Kk(A,r0)

GMRES Right preconditioning

(AM_l, I’o) — (A, I’o)
Kk(AM™,r0) — Ki(A, ro)
x, = M~ ty,

AM_lvk = Vk+1Hk

AM~ly =b

175 / 215



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014

GMRES and FGMRES

Let ro = b — Axg and KCx(A, rp) be the usual Krylov space
GMRES

min Hro — AXH2 ro — AXkLA,Ck(A, ro)
XEXo+ICk(A,ro)

GMRES Right preconditioning

(AM~L,rg) — (A, ro)
’Ck(AM_l, I’o) — ]Ck(A, I’o)
X = My,

AM™IV, =V, 1H,

Flexible GMRES Right preconditioning

AM 1y =b

Z — Ki(A,r0), xk=x0+Zxyx AZx =V 1Hy
k—1

Z, = span(rg, AM; 'rg, ..., H AMJ._1 ro)
j=0
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Linear system

We wish to solve large sparse systems

Ax =Db

RNXN

where A € is symmetric indefinite
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Linear system

A particular and important case arises in saddle-point problems
where the coefficient matrix is of the form

H A
AT 0

Since we want accurate solutions and norm-wise backward stability,
we will use as preconditioners fast factorizations of A computed
using static pivoting or mixed precision arithmetic.
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Multifrontal method

ASSEMBLY TREE
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Multifrontal method

NODE

ASSEMBLY TREE AT EACH
Fl] F12
L F F,
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Multifrontal method

NODE

ASSEMBLY TREE AT EACH
Fl] F12
L F F,

Foo < Foo — FngFﬂlFlz
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Multifrontal method

» From children to parent
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Multifrontal method

» From children to parent

» ASSEMBLY
Gather/Scatter operations
(indirect addressing)
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Multifrontal method

» From children to parent

» ASSEMBLY
Gather/Scatter operations
(indirect addressing)

» ELIMINATION Full
Gaussian elimination,
Level 3 BLAS (TRSM,
GEMM)
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Multifrontal method

; il
] H B
®

» From children to parent

» ASSEMBLY
Gather/Scatter operations
(indirect addressing)

» ELIMINATION Full
Gaussian elimination,
Level 3 BLAS (TRSM,
GEMM)
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Multifrontal method

Pivot can only be chosen fromFi; block since Fyy is NOT fully

summed.
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Multifrontal method

=]

Situation wrt rest of matrix
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Pivoting (1 x 1)

Choose x as 1 x 1 pivot if |x| > u|y]
where |y| is the largest in column.
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Pivoting (2 x 2)

For the indefinite case, we can choose 2 x 2 pivot where we

require
—1
e =[]
X> X3 lz| | —

where again |y| and |z| are the largest in their columns.

C [ =
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Pivoting

If we assume that k — 1 pivots are chosen but |xx| < uly|:
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Pivoting

If we assume that k — 1 pivots are chosen but |xx| < uly|:
» we can either take the RISK and use it or

» DELAY the pivot and then send to the parent a larger Schur
complement.
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Pivoting

If we assume that k — 1 pivots are chosen but |xx| < u|y|:
» we can either take the RISK and use it or

» DELAY the pivot and then send to the parent a larger Schur
complement.

This can cause more work and storage
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Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x; by
Xk + T

and CONTINUE.
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Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x; by
Xk + T

and CONTINUE.

This is even more important in the case of parallel implementation
where static data structures are often preferred
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Static Pivoting

Several codes use (or have an option for) this device:

» SuperLU (Demmel and Li)
» PARDISO (Gartner and Schenk)
» MA57 (Duff and Pralet)
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Static Pivoting

We thus have factorized
A+E=LDL" =M

where [E| < 7l
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Static Pivoting

We thus have factorized
A+E=LDL" =M

where [E| < 7l

The three codes then have an Iterative Refinement option.

IR will converge if p(M~1E) < 1
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Static Pivoting

Choosing 7
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Increase 7 = increase stability of decomposition
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Static Pivoting

Choosing 7

Increase 7 = increase stability of decomposition

Decrease 7 = better approximation of the original matrix,
reduces ||E||
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Static Pivoting

Choosing 7

Increase 7 = increase stability of decomposition

Decrease 7 = better approximation of the original matrix,
reduces ||E||

Trade-off
» ~ ¢ = big growth in preconditioning matrix M
» ~ 1 = huge error ||E||.
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Static Pivoting

Choosing 7

Increase 7 = increase stability of decomposition

Decrease 7 = better approximation of the original matrix,
reduces ||E||

Trade-off
» ~ ¢ = big growth in preconditioning matrix M
» ~ 1 = huge error ||E||.

Conventional wisdom is to choose

™= O(V7)
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Static Pivoting

Choosing 7

Increase 7 = increase stability of decomposition

Decrease 7 = better approximation of the original matrix,
reduces ||E||

Trade-off
» ~ ¢ = big growth in preconditioning matrix M
» ~ 1 = huge error ||E||.

Conventional wisdom is to choose
7=0(Ve)

In real life p(M1E) > 1
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Right preconditioned GMRES

procedure [x] = right_Prec.GMRES(A,M,b)
xo =M~'b, rg = b — Axo and 3 = [|ro|

V] = I’o/,B; k=0;
while [[ri|[ > p(|[b]| + [[A]] [|x|[)
k=k+1;

z, =M lv: w= Az,
fori=1,...,kdo

— yTw -
hl,k - v, w 1
w =w — hj,vj;
end for;

b1k = [w]
Vir1 = W/ hgi1 i
Vi =[vi,...,vi]; He = {hijhi<i<jrii<j<k
Yk = argminy ||Ser — Hyy|;
X, = Xg + Mflvkyk and rp, = b — Axy;
end while ;
180 :€Nd procedure.
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Right preconditioned Flexible GMRES

procedure [x] =FGMRES(A,M;,b)
xo = My!b, rg = b — Axg and 3 = ||ro||

vi =ro/B; k=0;
while [[rg|| > u(||b]| + ||A]] [|x«l])

Z, = M;lvk; w = Az;
fori=1,...,kdo

hik =viw;

W =w — hj(vj;
end for;
his16 = [|W]|; Virr = W/ hiq1 i
Z, = z1,...,z¢]; Vi = [v1, ..., VK]

Hi = {hijh<i<jrii<j<ki
Yk = argminy [|Be; — Hyyl;
X = X0 + Zryk and vy = b — Axg;
end while ;
100 / 2€Nd procedure.
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Roundoff error 1

The computed Land Din floating-point arithmetic satisfy

A+SA+TE=M
[I6A]] < c(n)e || IL] D LT]]]
|E[[ < 1.

The perturbation A must have a norm smaller than 7, in order to
not dominate the global error.
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Roundoff error 1

The computed Land Din floating-point arithmetic satisfy

A+SA+TE=M
[I6A]] < c(n)e || IL] D LT]]]
|E[[ < 1.

The perturbation A must have a norm smaller than 7, in order to
not dominate the global error.

A sufficient condition for this is nell|lL[|DIILT]]| <7

HEBILTI~2 =c <5
T n
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Roundoff error 1

The computed Land Din floating-point arithmetic satisfy

A+SA+TE=M
[I6A]] < c(n)e || IL] D LT]]]
|E[[ < 1.

The perturbation A must have a norm smaller than 7, in order to
not dominate the global error.

A sufficient condition for this is nell|lL[|DIILT]]| <7

NEBILT |||~ 2 =< T
T n

Moreover, we assume that max{||M~Y|, ||Z«||} <

S o
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Roundoff error

The roundoff error analysis of both FGMRES and GMRES can be
made in four stages:
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Roundoff error
The roundoff error analysis of both FGMRES and GMRES can be
made in four stages:

1. Error analysis of the Arnoldi-Krylov process (Giraud and
Langou, Bjorck and Paige, and Paige, Rozloznik, and
Strakos).

MGS applied to

z1 = My 'ro/[lroll, 2 =My,

C= (Zl,Azl,AZQ, .. ) = Vk+1Rk

[ |lrol] Hi1 ... Hix
0 H271 H27k
Re—| 0 0 ... Hsy
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Roundoff error

The roundoff error analysis of both FGMRES and GMRES can be
made in four stages:

1. Error analysis of the Arnoldi-Krylov process (Giraud and
Langou, Bjorck and Paige, and Paige, Rozloznik, and
Strakos).

2. Error analysis of the Givens process used on the upper
Hessenberg matrix Hy in order to reduce it to upper
triangular form.
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1. Error analysis of the Arnoldi-Krylov process (Giraud and
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Strakos).

2. Error analysis of the Givens process used on the upper
Hessenberg matrix Hy in order to reduce it to upper
triangular form.

3. Error analysis of the computation of x5 in FGMRES and
GMRES.
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Roundoff error

The roundoff error analysis of both FGMRES and GMRES can be
made in four stages:

1. Error analysis of the Arnoldi-Krylov process (Giraud and
Langou, Bjorck and Paige, and Paige, Rozloznik, and
Strakos).

2. Error analysis of the Givens process used on the upper
Hessenberg matrix Hy in order to reduce it to upper
triangular form.

3. Error analysis of the computation of x5 in FGMRES and
GMRES.

4. Use of the static pivoting properties and A +E = LDL" in
order to have the final expressions.

The first two stages of the roundoff error analysis are the same for
both FGMRES and GMRES. The last stage is specific to each one
of the two algorithms.
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Roundoff error FGMRES

Theorem 1.

T min(Hi) > c7(k, 1)e [[Hil| + O(c?) vk,

5] <1-—¢, VK|

(where 5 are the sines computed during the Givens algorithm)
and

2.12(n+ 1)e < 0.01 and 18.53¢ n2x(CK)) < 0.1 Vk

~

3k, k<n
such that, Vk > /A< we have

b — Axel| < ca(n, k)= (11b1] + [[A]|IRoll + [A]l1Zil 19l ) + O(=2)
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Roundoff error FGMRES
Moreover, if M; = M. Vi,

p=13[|W|| + c(k, e ||M||||Z4]| <1 Vk <k,

where

W, =[Mz; —¥1,..., Mz, — V],

we have:

b — A, <

c(n, k)ve (|[bl] + [|A]l %ol + [|A[l |Z«[] [IM(%k — %0)I|) + O(c?)
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Roundoff error FGMRES

Theorem 2
Under the Hypotheses of Theorem 1, and

c(me || IL[DIIET]]| < 7

c(n, ke [[A]|||1Zi]| <1 Yk <k

S

max{|[M~H], [|Zx][} <

we have
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Roundoff error FGMRES

Theorem 2
Under the Hypotheses of Theorem 1, and

c(me || IL[DIIET]]| < 7

c(n, K)ve Al [1Z4ll <1 vk < k

Ao

max{|[M~H], [|Zx][} <

we have

[1b — ARy < 2pe (|[bl] + [JA]] (|[%o]| + [Ixel])) + O(?).

c(n, k)
p= =
1—c(n, ke [|All]|Z]]
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Roundoff error right preconditioned
GMRES

Theorem 3
We assume of applying Iterative Refinement for solving

M(Xx — Xo) = V¥ at last step.
Under the Hypotheses of Theorem 1 and’ c(n)e k(M) < 1‘

~

3k, k<n
such that, Vk > /A<, we have

Ib—Axi|| < ci(n, k)e {Hb\l + [[A[l{[xol[+
[AINIZc | IM i = 5o0)|+
[HAM™H{[MI] [k — %ol +
IAM=H[[HL[DLT [ M(Zic — o))

} + 0(e2).
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Roundoff error right preconditioned

GMRES

As we did for FGMRES, if
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Roundoff error right preconditioned
GMRES

As we did for FGMRES, if

c(me || IL[DIIET]]| < 7

we can prove that 3k* s.t Vk > k* the right preconditioned
GMRES computes a X s.t.

Ib— ARl < c(n k)= | |Ibl] + [|A]l[[%ol |+
A1 124]] 1| MR — %)+
IEHBILT 1M (& — %o)l| | + O(=2).
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Mixed precision arithmetic

> Very fast 32-bit arithmetic unit
M is the fI(LU) of A and |[|[M — A|| < ¢(N) /e ||A|
(e =2.2 x10716)
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> We use 32-bit arithmetic for factorization and triangular solves
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Mixed precision arithmetic

> Very fast 32-bit arithmetic unit
M is the fI(LU) of A and |[|[M — A|| < ¢(N) /e ||A|
(e =2.2 x10716)

> We use 32-bit arithmetic for factorization and triangular solves

» If kK(A)y/e > 1 then lterative Refinement may not converge.
FGMRES does
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Mixed precision arithmetic

v

Very fast 32-bit arithmetic unit
M is the fI(LU) of A and |[|[M — A|| < ¢(N) /e ||A|
(e =2.2 x10716)

We use 32-bit arithmetic for factorization and triangular solves

v

v

If K(A)y/e > 1 then lIterative Refinement may not converge.
FGMRES does

> [[Wy|| < VEc(N)||A|| < 1 and
[IM(Xx — Xo)|| < [|b — AX«|| + O(v/e) = FGMRES backward
stable
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Mixed precision arithmetic

v

Very fast 32-bit arithmetic unit
M is the fI(LU) of A and |[|[M — A|| < ¢(N) /e ||A|
(e =2.2 x10716)

We use 32-bit arithmetic for factorization and triangular solves

v

v

If K(A)y/e > 1 then lIterative Refinement may not converge.
FGMRES does

[IWi| < Ve c(N)[|A][ <1 and

[IM(Xxx — %0)|| < ||b — AX«|| + O(/e) = FGMRES backward
stable

GMRES is not backward stable

v

v
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Improved error analysis for FGMRES

If we apply Flex-GMRES to solve the system, using finite-precision
arithmetic conforming to |IEEE standard with relative precision
and under the following hypotheses:

212(n+1)e <001  and  (n)er(CH) <0.1Vk
where
3
co(n) = 18.53n2
and
15| <1—¢, Vk,

where 5 are the sines computed during the Givens algorithm

applied to Hy in order to compute ¥y, then there exists k, k<n
such that, Vk > k, we have

Ib— A < a(nk)e (HbH + [[A[l %o+
IAIHZk 3]+ [|AZ]] HMI) +0(e?).
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Test Problems

Mario Arioli

’ H n nnz Description ‘
CONT_-201 || 80595 | 239596 | KKT matrix Convex QP (M2)
CONT_300 || 180895 | 562496 | KKT matrix Convex QP (M2)
TUMA_1 22967 | 76199 | Mixed-Hybrid finite-element

200 / 215

Test problems



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014
MAS7 tests
] | n | nnz(L)+nnz(D) | Factorization time
CONT_201 80595 9106766 9.0 sec
CONT_300 || 180895 22535492 28.8 sec

201 / 215

MAB7 without static pivot

Mario Arioli
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MAS7 tests
] | n | nnz(L)+nnz(D) | Factorization time
CONT_201 || 80595 9106766 9.0 sec
CONT_300 || 180895 22535492 28.8 sec
MAB7 without static pivot
nnz(L)+nnz(D)+ | Factorization time | # static pivots
FGMRES (#it)
CONT_201 5563735 (6) 3.1 sec 27867
CONT_300 12752337 (8) 8.9 sec 60585
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MAS7 with static pivot 7 = 1078
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L[ ILT][ vs 1/7

LHDHLTI vs 1/
20

10
10"t
_8
5
= 10
5 10
=
10° | §
—o— TUMA1
—<— CONT201
—8— CONT300
- ‘ ‘ ‘ E—Et
10 10* 10° 10° 10" 10" 10"
1/t
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Test Problems: TUMA 1

x10* TUMA 1
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Test Problems: CONT-201
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2 3 4

nz = 438795

Mario Arioli
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Numerical experiments: TUMA 1
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Mario Arioli

Al M 50)|
[1b]] + [|A[]|%«]]

T IR | GMRES | FGMRES [1Z¢]| | GMRES [ FGMRES | || |L||D||LT[]]
1.0e-03 3.0e-03 1.0e-14 7.2e-17 1.2e402 3.5e-03 3.5e-03 4.4e4-04
1.0e-04 5.3e-17 1.8e-16 3.1e-17 4.7e401 4.4e-04 4.4e-04 1.8e+05
1.0e-05 5.1e-17 1.3e-16 1.9e-17 4.4e+-01 4.5e-05 4.5e-05 1.8e+06
1.0e-06 1.5e-16 1.3e-16 1.9e-17 4.4e4-01 4.5e-06 4.5e-06 1.8e+07
1.0e-07 1.8e-17 1.2e-16 2.0e-17 4.3e+-01 4.5e-07 4.5e-07 1.8e+08
1.0e-08 1.7e-17 1.3e-16 1.8e-17 4.3e+01 4.5e-08 4.5e-08 1.8e4+09
1.0e-09 1.8e-17 2.8e-15 1.8e-17 2.6e+01 4.0e-08 4.0e-08 1.8e+10
1.0e-10 1.7e-17 4.2e-13 1.8e-17 8.8e4-00 4.0e-07 4.0e-07 1.8e+11
1.0e-11 6.7e-17 1.0e-10 6.2e-17 6.8e+-00 4.0e-06 4.0e-06 1.8e+12
1.0e-12 2.1e-17 1.0e-08 2.2e-17 3.2e+01 4.3e-05 4.3e-05 1.8e+13
1.0e-13 2.0e-17 2.4e-07 1.9e-17 1.3e4+02 3.9e-04 3.9e-04 1.8e+14
1.0e-14 8.6e-17 8.6e-06 2.1e-17 1.8e402 4.3e-03 4.3e-03 1.8e+15

TUMA 1 results
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Numerical experiments: CONT _201
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Mario Arioli

[1b — AR .
AR [IM(%ic — o)
[Lb]] + [JAI][[X]|

T IR | GMRES | FGMRES [1Z¢]| | GMRES | FGMRES | |[IL[ID[ILT|]]
1.0e-03 4.0e-04 1.8e-05 9.8e-06 * 7.1e-04 1.5e-04 8.3e4-07
1.0e-04 4.0e-05 2.0e-07 2.0e-07 * 1.5e-05 1.9e-05 1.8e+08
1.0e-05 3.5e-06 1.8e-12 1.1e-16 4.1e+-05 5.9e-06 1.3e-05 4.4e4+-09
1.0e-06 3.5e-07 1.1e-11 2.1e-16 2.7e+06 7.8e-07 7.8e-07 1.8e+10
1.0e-07 4.0e-08 4.8e-11 1.8e-16 1.4e+08 8.7e-08 8.7e-08 1.9e+12
1.0e-08 3.8e-13 2.7e-10 5.8e-17 2.1e+07 1.3e-06 1.3e-06 1.8e+13
1.0e-09 5.5e-17 1.8e-09 4.5e-17 1.1e4+07 1.3e-06 1.3e-06 1.5e+13
1.0e-10 7.7e-17 3.2e-09 7.2e-17 3.4e4-05 9.2e-06 9.2e-06 1.5e+14
1.0e-11 4.6e-17 2.1e-09 4.5e-17 1.9e+03 2.8e-04 2.8e-04 2.6e+15
1.0e-12 5.2e-17 4.5e-07 3.8e-17 2.0e+02 9.5e-04 9.5e-04 1.6e+16
1.0e-13 1.3e-16 1.3e-04 2.6e-16 1.6e+02 1.1e-02 1.1e-02 4.1e417
1.0e-14 1.2e-03 2.3e-01 2.5e-14 4.3e4-02 1.9e-02 1.0e-02 9.2e+18

CONT_201 results
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Numerical experiments: CONT _300
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Mario Arioli

16 — Ax,]| -
TRV TR [IM(Xk — %o)|
[[b]] + [[A][] %]

- IR | GMRES | FGMRES [1Zcl] | GMRES | FGMRES | [||L[[D|ILT|]]
1.0e-03 3.8e-04 3.6e-05 2.5e-05 * 8.7e-04 1.3e-04 2.5e+08
1.0e-04 3.6e-05 5.5e-07 5.5e-07 * 6.5e-05 2.8e-05 4.3e+09
1.0e-05 4.3e-06 8.7e-09 8.7e-09 * 3.7e-06 6.1e-06 1.4e+11
1.0e-06 3.7e-07 6.9e-11 1.4e-16 3.0e+06 5.7e-07 9.8e-07 6.2e+11
1.0e-07 6.8e-08 2.1e-10 8.2e-17 7.6e+06 2.3e-07 2.3e-07 2.0e+12
1.0e-08 2.1e-09 1.4e-08 1.2e-16 7.5e+07 1.8e-06 1.8e-06 4.1e+13
1.0e-09 1.1e-16 1.6e-05 8.8e-17 3.7e+07 2.8e-04 2.8e-04 3.7e+15
1.0e-10 3.9e-17 6.8e-07 4.1e-17 3.8e+05 3.6e-04 3.6e-04 9.6e+15
1.0e-11 4.0e-17 1.6e-06 8.7e-17 1.4e+03 5.3e-03 5.3e-03 1.0e+17
1.0e-12 7.3e-17 1.1e-06 2.7e-16 1.5e+02 1.0e-02 1.0e-02 1.9e+17
1.0e-13 1.8e-16 3.4e-03 9.2e-16 1.3e+02 1.9e-01 1.9e-01 1.3e+19
1.0e-14 1.1e-15 1.4e-01 1.8e-14 2.1e+02 4.7e-02 4.7e-02 6.6e+19

CONT_300 results
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Numerical experiments

. CONT201 Test example
10 T T T T T T

—+— FGMRES =103
—&— FGMRES t=10"*
—+— FGMRES t=10"°
—=— FGMRES 7= 107°
—&— FGMRES t=10""
—6— FGMRES 1= 1078
—<— FGMRES t=10"°
| | —>—FGMRESt=10""°
—%— FGMRES t= 107"
] | —~—FGMRESt=10""2
—+— FGMRES t=10""3
1 | —%—FGMRESt=10""

Norm of the residual scaled by Il A Il lIxIl + llbll

0 5 10 15 20 25 30 35
Number of iterations

FGMRES on CONT-201 test example
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Numerical experiments
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Norm of the residual scaled by Il A Il lixIl + lIbll

CONT201 Test example

10 15 20 25
Number of iterations

35

—+— RGMRES t=10"%
—6— RGMRES t=107*
—#— RGMRES t= 107"
—%— RGMRES t=107°
—=— RGMRES t=10""
—6— RGMRES t=10"8
—<— RGMRES t=10"°
—b— RGMRES t=107"°
—%— RGMRES t=10""
—A— RGMRES t=10""2
—#+— RGMRES t=10""
—%— RGMRESt=10""*

GMRES on CONT-201 test example

Mario Arioli
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Numerical experiments

CONT201 Test example: = 107, 1078, 1071°
10 ‘ . . . ‘ ‘

—6— FGMRES t=107°

—#— GMRES t=10"%
< FGMRESt=10"8

—+— GMRESt=1078

1 | —=— FGMRESt=10"""

—=— GMRES t=10""°

o

Norm of the residual scaled by Il A 1l [IxIl + Ibll

0 5 10 15 20 25 30 35
Number of iterations

GMRES vs. FGMRES on CONT-201 test example:
7=107°,10"8,107%0
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Numerical experiments

CONT300 Test example: t = 107, 1078, 1071°
10 5t T T T T T T

—6— FGMRES t=107°

—%— GMRES t=10"°
< FGMRESt=10"%

—+— GMRESt=10"

1 | —=—FGMRESt=10"""

—<— GMRES t=10""°

o

Norm of the residual scaled by Il A Il [IxIl + Ibll

0 5 10 15 20 25 30 35
Number of iterations

GMRES vs. FGMRES on CONT-300 test example:
7=107°,10"8,107%0
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Numerical experiments

10 T
— ItRef
— GMRES full
1072 — - GMRES10 + ItRef ||
— - GMRES restart=5
GMRES restart=3
_, — - GMRES restart=2
10 GMRES restart=1 [
—+ flexible GMRES
10° j
10° j
1071 |
1077 \ \ B
\\t \
107 U \\ ]
\ ~ \
\ \ \
+\ \
1048 L N \, | Bl
+ o e e o e
107" L L L L
0 5 10 15 20 25

Restarted GMRES vs. FGMRES on CONT-201 test example:
=108
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Numerical experiments

10 T
— ItRef
— GMRES full
— - GMRES10 + ItRef
102 1 — - GMRES restart=5 ||
GMRES restart=3
— - GMRES restart=2
GMRES restart=1
107 F 1
10° F 1
N T T T m e —— ol
’
5 /
10 - ’
N /
N /
N
10 -
107 b _ 1
o
1077 L |
107" I I I I
0 5 10 15 20 25

Restarted GMRES on CONT-201 test example: 7 = 107°
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IR vs FGMRES
Iterative refinement FGMRES
Matrix Total it RR Total / inner ~ RR IAZ;] 1|12 19z I
besstk20 2/2 l.4e-11 1.7e+00  4.6e+02
n =485 30 2.1e-15 4/2 3.4e-14 1.6e+00 3.8e-01
K(A) ~ 4 x 1012 6/2 7.2¢-17 1.6e+00  5.6e-04
bcsstm27 2/2 5.8e-11 1.7e400 2.7e+01
n = 1224 4/2 1.8e-11  6.3e-01 1.3e+00
k(A) =5 x 10° 6/2 6.0e-13  2.0e+00 7.6e-02
22 1.6e-15 8/2 1.5e-13  1.7e+00 1.0e-02
10 /2 1.2e-14 1.7e+00 1.9e-03
12 /2 2.6e-15 1.8e+00 1.7e-04
14 /2 1.8e-16  1.6e+00 4.3e-05
s3rmg4m1 2/2 3.5e-11  1.0e+-00 8.6e+01
n = 5489 16 9 %15 4/2 2.1e-13  1.1e+00 3.2e-01
K(A) =~ 4 x 10° ’ 6/2 4.5e-15 1.7e+00 6.4e-03
8/2 1.1e-16  1.6e+00 1.3e-04
s3dkgq4m?2

n = 90449 53 1.1e-10 10 / 10 6.3e-17 1.2e400 1.2e+03

K(A) ~ 7 x 1010
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Summary

» IR with static pivoting is very sensitive to 7 and not robust
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Summary

v

IR with static pivoting is very sensitive to 7 and not robust

GMRES is also sensitive and not robust

v

v

FGMRES is robust and less sensitive (see roundoff analysis)

v

Gains from restarting. Makes GMRES more robust, saves
storage in FGMRES ( but not really needed)
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Summary

v

IR with static pivoting is very sensitive to 7 and not robust

GMRES is also sensitive and not robust

v

v

FGMRES is robust and less sensitive (see roundoff analysis)

v

Gains from restarting. Makes GMRES more robust, saves
storage in FGMRES ( but not really needed)

Understanding of why 7 ~ /= is best.

v
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