TECHNISCHE UNIVERSITÄT BERLIN

Institut für Mathematik

WS 01/02 Abgabe: 10.12.02

Ferus / Peters

http://www.math.tu-berlin.de/Vorlesungen/WS01/Analysis_I

7. Übung Analysis I

Die Klausur findet am 13.2.02 von 8-10 Uhr statt. Die Raumaufteilung wird noch bekannt gegeben. Am Anfang des SS 02 wird es eine Nachklausur geben.

Übungsaufgaben

1. Aufgabe

Untersuchen Sie die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

auf Konvergenz und bestimmen Sie gegebenenfalls ihren Grenzwert.

2. Aufgabe

- a) Beweisen Sie das Verdichtungskriterium: Sei (a_n) eine monoton fallende Nullfolge. Die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert genau dann, wenn die Reihe $\sum_{k=1}^{\infty} 2^k a_{2^k}$ konvergiert.
- b) Für welche $s \in \mathbb{Q}$ konvergiert die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^s}$?

3. Aufgabe

Untersuchen Sie die folgenden Reihen auf Konvergenz.

a)
$$\sum_{n=1}^{\infty} (\sqrt[n]{a} - 1)^n$$
,

a)
$$\sum_{n=1}^{\infty} (\sqrt[n]{a} - 1)^n$$
, b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$, c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}.$$

Tutoriumsvorschläge

1. Aufgabe

Untersuchen Sie die folgenden Reihen auf Konvergenz.

a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
, b) $\sum_{n=1}^{\infty} (-1)^{n+1} (1 - \sqrt[n]{a}), \ a \in \mathbb{R}_{>0}$ c) $\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}$, .

c)
$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}$$
,

2. Aufgabe

- a) Zeigen Sie, dass aus der Konvergenz von $\sum_{n=1}^{\infty}a_n^2$ und $\sum_{n=1}^{\infty}b_n^2$ die Konvergenz der Reihe $\sum_{n=1}^{\infty}a_nb_n$ folgt.
- b) Sei $a_n \ge 0$ und $\sum_{n=1}^{\infty} a_n$ konvergiere. Konvergiert dann $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$?

Hausaufgaben

1. Aufgabe

(8 Punkte)

Untersuchen Sie die folgenden Reihen auf Konvergenz.

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{(n+1)(n+2)}$$
,

b)
$$\sum_{n=1}^{\infty} \sqrt[n]{n} q^n, \ q \in \mathbb{C},$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$
,

d)
$$\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^n$$
.

2. Aufgabe

(3 Punkte)

Die Reihe $\sum_{n=1}^{\infty} a_n$ sei konvergent. Zeigen Sie, dass die Folge (r_k) mit $r_k = \sum_{n=k}^{\infty} a_n$ eine Nullfolge ist.

3. Aufgabe

Es sei $b_n>0$ und $\lim\frac{a_n}{b_n}=c\neq 0$. Zeigen Sie, dass $\sum_{n=1}^\infty a_n$ genau dann konvergiert, wenn $\sum_{n=1}^\infty b_n$ konvergiert.

Gesamtpunktzahl: 15