WS 03

Abgabe: 11.11.02

Institut für Mathematik

Ferus / Peters http://www.math.tu-berlin.de/Vorlesungen/WS02/AnalysisIII

3. Übung Analysis III

(Konvergenzsätze, Messbarkeit und Integrierbarkeit)

Tutoriumsvorschläge

1. Aufgabe

- a) Sind die konstanten Funktionen messbar?
- b) Gibt es nicht μ_n -integrierbare bzw. nicht μ_n -messbare Funktionen $f: \mathbb{R}^n \to \mathbb{R}$, so dass für eine Folge von Intervallen $I_n \in I(\mathbb{R}^n)$ mit $\bigcup I_n = \mathbb{R}^n$ gilt $f\chi_I \in \mathcal{L}^1(\mu_n)$?
- c) Diskutieren Sie Zusatzbedingungen zu "für eine Folge von Intervallen $I_n \in I(\mathbb{R}^n)$ mit $\bigcup I_n = \mathbb{R}^n$ gilt $f\chi_I \in \mathcal{L}^1(\mu_n)$ ", welche die μ_n -Integrierbarkeit von f zur Folge haben.

2. Aufgabe

Seien $f, g: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$, $g(x) = x^{-\frac{3}{2}} \sin x$ und $I_n = [-n, n]$. Zeigen Sie: $\mu_1(\mathbb{R} \setminus \bigcup_{n=1}^{\infty} I_n) = 0$, $\int f \chi_{I_n} = \int g \chi_{I_n} = 0$, aber $f \notin \mathcal{L}^1(\mu_1)$ und $g \in \mathcal{L}^1(\mu_1)$ (letzteres z.B. mit dem Ausschöpfungssatz aus HA 2).

Hausaufgaben

1. Aufgabe (5 Punkte)

- a) Sei $f: \mathbb{R} \to \mathbb{R}$ monoton. Zeigen Sie, dass $f \in \mathcal{L}^1(\mu_1)$ genau dann, wenn $f = \mu_1$ 0.
- b) Sei $f: \mathbb{R} \to \mathbb{R}$ mit kompaktem Träger und sei f auf seinem Träger monoton. Zeigen Sie, dass $f \in \mathcal{L}^1(\mu_1)$.

2. Aufgabe (10 Punkte)

- a) Beweisen Sie den Ausschöpfungssatz: Sei $f \colon \mathbb{R}^n \supset M \to \mathbb{R}$, M messbar, (M_n) eine Folge messbarer Teilmengen von \mathbb{R}^n , sodass $M_n \subset M_{n+1}$ und $\varphi(M \setminus \bigcup_{n=1}^{\infty} M_n) = 0$. Dann folgt: $f \in \mathcal{L}^1(M,\varphi)$, wenn $f \in \mathcal{L}^1(M_n,\varphi)$ und $\int_{M_n} |f| d\varphi$ beschränkt ist. Ist das der Fall, so gilt $\int_M f d\varphi = \lim \int_{M_n} f d\varphi$.
- b) Sei $f:]a, b[\to \mathbb{R}, a, b \in \mathbb{R}$. Dann ist $f \in \mathcal{L}^1(\mu_1)$ genau dann, wenn |f| auf]a, b[uneigentlich regelintegrierbar ist.

3. Aufgabe (5 Punkte)

Sei $\delta_{\mathbb{N}}$ das Diracmaß zu den natürlichen Zahlen $\mathbb{N} \subset \mathbb{R}$, $\mathbb{R}^{\mathbb{N}}$ der Vektorraum der Folgen in \mathbb{R} , $\mathbb{R}^{\mathbb{R}}$ der Vektorraum der Abbildungen $f \colon \mathbb{R} \to \mathbb{R}$ und $\hat{} \colon \mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{N}}$, $f \mapsto \hat{f} := (f(n))_{n \in \mathbb{N}}$.

- a) Zeigen Sie, dass ^ linear ist, und dass $f = \delta_{\mathbb{N}} g$ genau dann, wenn $\hat{f} = \hat{g}$.
- b) Zeigen Sie, dass $f \in \mathcal{L}^1(\delta_{\mathbb{N}})$ genau dann, wenn die Reihe $\sum \hat{f}$ konvergiert, und dass dann $\int f d\delta_{\mathbb{N}} = \sum \hat{f}$.
- c) Folgern Sie das Majorantenkriterium für Reihen aus dem Satz von Lebesgue.

Gesamtpunktzahl: 20