Prof. Dr. R. Nabben/C. Mense

11. Januar 2006

Numerische Mathematik

10. Übungsblatt zur Vorlesung

23. Aufgabe insg. 6 Punkte

Seien $\rho(z)$ und $\sigma(z)$ die beiden charakteristischen Polynome eines konvergenten linearen k-Schrittverfahrens.

Zeigen Sie: Falls ρ und σ eine gemeinsame Nullstelle c haben, so ist $c \neq 1$ und das zu $\widehat{\rho}(z) := \frac{\rho(z)}{z-c}$ und $\widehat{\sigma}(z) := \frac{\sigma(z)}{z-c}$ gehörige lineare Mehrschrittverfahren ist konsistent von gleicher Ordnung und ebenfalls konvergent.

24. Aufgabe insg. 4 Punkte

Betrachten Sie, für die Differentialgleichung y' = f(t, y) mit f genügend oft stetig differenzierbar, die folgenden Mehrschrittverfahren: $(f_n = f(t_n, u_n))$

i)
$$u_{n+2} = u_n + \frac{h}{2} [f_{n+1} + \alpha f_n]$$

ii)
$$u_{n+2} = \beta u_{n+1} + 5 u_n + h[\alpha f_{n+1} + 2 f_n]$$

Wie müssen α, β in i), ii) gewählt werden, damit Konsistenz vorliegt? Bestimmen Sie Konsistenzordnung. Sind die Verfahren auch konvergent?

25. Aufgabe insg. 6 Punkte

Berechnen Sie die Bereiche absoluter Stabilität beim impliziten und expliziten Euler-Verfahren und bei der Mittelpunktsregel. Skizzieren Sie diesen Bereich.

Programmieraufgabe

Lösen Sie die Anfangswertaufgabe y' = -40y, y(0) = 1 im Intervall [0, 1] mit dem Euler-Verfahren für die Schrittweiten 0.06, 0.04, 0.02. Interpretieren Sie die Ergebnisse.