Eine Aufgabe zu Taylorpolynom, zwei Aufgaben zu Potenzreihen und eine Aufgabe zu rekursiv definierten Folgen

Aufgabe (Taylorpolynom)

Die Funktion $f:(-1,\infty)\to\mathbb{R}$ sei gegeben durch $f(x)=\frac{x}{1+x}$.

- (a) Man finde die allgemeine Formel für die n-te Ableitung von f und beweise diese mittels vollständiger Induktion.
- (b) Man berechne das Taylorpolynom 2. Grades mit Entwicklungspunkt $x_0 = 2$ und schätze das Restglied auf dem Intervall [1, 3] ab.

Lösung:

(a) Es gilt $f'(x) = \frac{1}{(1+x)^2}$, $f''(x) = -\frac{2}{(1+x)^3}$ und $f'''(x) = \frac{6}{(1+x)^4}$. Wir vermuten, dass für $n \ge 1$

$$f^{(n)}(x) = (-1)^{n+1} \frac{n!}{(1+x)^{n+1}}$$

gilt und beweisen die Formel mit vollständiger Induktion.

Induktionsanfang: s.o.

Induktionsvoraussetzung: Die Formel gilt für ein $n \ge 1$.

Induktionsschritt:

$$f^{(n+1)}(x) = \left((-1)^{n+1} \frac{n!}{(1+x)^{n+1}} \right)' = (-1)^{n+1} \frac{-n!(n+1)(1+x)^n}{(1+x)^{2n+2}}$$
$$= (-1)^{n+2} \frac{(n+1)!}{(1+x)^{n+2}}.$$

Für die folgenden Teilaufgaben benötigen wir die Ableitungen an der Stelle 2:

$$f^{(n)}(2) = (-1)^{n+1} \frac{n!}{3^{n+1}}, \quad n \ge 1.$$

(b) Es gilt

$$T_2(x) = \sum_{k=0}^{2} \frac{f^{(k)}(2)}{k!}(x-2) = \frac{2}{3} + \frac{1}{9}(x-2) - \frac{1}{27}(x-2)^2.$$

Für $x \in [1, 3]$ und ein ξ zwischen x und 2 gilt

$$|R_2(x)| = \left| \frac{f^{(3)}(\xi)}{3!} (x-2)^3 \right| = \frac{1}{(1+\xi)^4} (x-2)^3 \le \frac{1}{2^4} \cdot 1^3 = \frac{1}{16}.$$

Aufgabe (Potenzreihen)

Für welche $x \in \mathbb{R}$ konvergieren folgende Potenzreihen?

(a)
$$\sum_{k=1}^{\infty} (x+2)^k \left(1 + \frac{1}{k}\right)^k$$
 (b) $\sum_{k=1}^{\infty} \frac{3^k + (-2)^k}{k} (x+1)^k$

Lösung:

(a) Es gilt

$$\left| \frac{(x+2)^{k+1} \left(1 + \frac{1}{k+1}\right)^{k+1}}{(x+2)^k \left(1 + \frac{1}{k}\right)^k} \right| = |x+2| \frac{(1 + \frac{1}{k+1})^{k+1}}{\left(1 + \frac{1}{k}\right)^k} \to |x+2| \frac{e}{e} = |x+2|.$$

Nach dem Quotientenkriterium konvergiert die Reihe absolut falls |x+2| < 1 ist, was für $x \in (-3,-1)$ gilt. Auf $\mathbb{R} \setminus [-3,-1]$ ist die Reihe divergent. In den Randpunkten $x \in \{-1,-3\}$ ist die Reihe auch divergent, weil für diese Punkte $|x+2|^k \left(1+\frac{1}{k}\right)^k = \left(1+\frac{1}{k}\right)^k \to e$ gilt, d.h. die notwendige Konvergenzbedingung ist nicht erfüllt.

(b) Es gilt

$$\left| \frac{(3^{k+1} + (-2)^{k+1})(x+1)^{k+1}}{k+1} \frac{k}{(3^k + (-2)^k)(x+1)^k} \right| = \underbrace{\frac{k}{k+1}}_{\rightarrow 1} \underbrace{\frac{3^{k+1} + (-2)^{k+1}}{3^k + (-2)^k}}_{\rightarrow 3} |x+1| \rightarrow 3|x+1|,$$

denn

$$\frac{3^{k+1} + (-2)^{k+1}}{3^k + (-2)^k} = \frac{1 + (-\frac{2}{3})^{k+1}}{\frac{1}{3} + (-\frac{2}{3})^k} \to \frac{1+0}{\frac{1}{3} + 0} = 3.$$

Nach dem Quotientenkriterium ist die Reihe absolut konvergent, wenn 3|x+1|<1 ist, was für $x\in(-\frac43,-\frac23)$ gilt. Auf $\mathbb{R}\setminus[-\frac43,-\frac23]$ ist die Reihe divergent. Es bleibt die Untersuchung der Randpunkte. Für $x=-\frac43$ gilt

$$\frac{3^k + (-2)^k}{k} \left(-\frac{4}{3} + 1\right)^k = (-1)^k \frac{3^k + (-2)^k}{3^k k} = \frac{(-1)^k}{k} + \frac{2^k}{k3^k}.$$

Die Reihen $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ und $\sum_{k=1}^{\infty} \frac{2^k}{k3^k}$ sind konvergent. Also ist die Potenzreihe aus der Aufgabenstellung konvergent für $x=-\frac{4}{3}$.

Für $x = -\frac{2}{3}$ gilt

$$\frac{3^k + (-2)^k}{k} \left(-\frac{2}{3} + 1\right)^k = \frac{3^k + (-2)^k}{3^k k} = \frac{1}{k} \left(1 + \frac{(-2)^k}{3^k}\right) =: b_k.$$

Wegen $\frac{(-2)^k}{3^k} \to 0$ gibt es zu $\varepsilon = \frac12$ ein $N(\frac12)$ so, dass $|\frac{(-2)^k}{3^k}| < \frac12$ für alle $k \ge N(\frac12)$ gilt. Damit gilt $b_k \ge \frac1k (1-\frac12) = \frac1{2k}$ für $k \ge N(\frac12)$.

Die Reihe $\sum_{k=1}^{\infty} \frac{1}{2k}$ ist divergent und somit ist für $x=-\frac{2}{3}$ auch die Potenzreihe (b) divergent nach dem Minorantenkriterium.

Aufgabe (Folgen)

(a) Die Folge $(x_n)_{n\in\mathbb{N}}$ sei rekursiv definiert durch

$$x_0, x_1 \in \mathbb{R}$$
 und $x_{n+2} = x_{n+1} - x_n$, für $n \in \mathbb{N}$.

Für welche Startwerte x_0 und x_1 konvergiert die Folge? Man gebe gegebenenfalls den Grenzwert an.

(b) Es seien $a,b\in\mathbb{R}$ mit $a\geq 0$ und $b\geq 2$ gegeben. Die Folge $(x_n)_{n\in\mathbb{N}}$ sei definiert durch

$$x_0 = 0$$
, $x_{n+1} = \frac{x_n + a}{b}$, $n \in \mathbb{N}$.

- (i) Man zeige: Ist $0 \le x_n \le a$, so ist auch $0 \le x_{n+1} \le a$.
- (ii) Man zeige: Die Folge ist monoton.
- (iii) Ist die Folge konvergent? Man berechne gegebenenfalls den Grenzwert.

Lösung

(a) Für $n \ge 0$ gilt

$$x_{n+3} = x_{n+2} - x_{n+1} = x_{n+1} - x_n - x_{n+1} = -x_n. (1)$$

Es folgt

- $x_{3n} = (-1)^n x_0$. Beweis mit vollst. Ind.: IA: $x_{3\cdot 0} = (-1)^0 x_0$, IV: $x_{3n} = (-1)^n x_0$, IBeh.: $x_{3(n+1)} = (-1)^{n+1} x_0 =$ IBew.: $x_{3(n+1)} = x_{3n+3} = -x_{3n} \stackrel{(IV)}{=} -(-1)^n x_n = (-1)^{n+1} x_0$
- $x_{3n+1} = (-1)^n x_1$. Bew. analog zum obigen.
- $x_{3n+2} = (-1)^n x_2 = (-1)^n (x_1 x_0)$. Bew. analog zum obigen.

Damit (x_n) konvergiert, müssen alle Teilfolgen konvergieren und zwar gegen den gleichen Grenzwert. Damit (x_{3n}) konvergiert, muss $x_0 = 0$ sein, ansonsten hätte die Folge zwei verschiedene Häufungspunkte x_0 und $-x_0$. Genauso muss $x_1 = 0$ sein, damit (x_{3n+1}) konvergiert. Mit der Wahl $x_0 = x_1 = 0$ ist auch die Teilfolge (x_{3n+2}) konstant und somit konvergent.

Für $x_0 = x_1 = 0$ sind also alle Teilfolgen konstant gleich 0. Bei dieser Wahl ist (x_n) konvergent. Für jede andere Wahl von x_0 und x_1 ist (x_n) divergent.

(b) (i) Sei
$$0 \le x_n \le a$$
, dann gilt $x_{n+1} = \frac{x_n + a}{b} \le \frac{a + a}{b} \stackrel{b \ge 2}{\le} \frac{2a}{2} = a$. (ii) Beweis der Monotonie mit vollst. Induktion

IA: $x_0 = 0 \le \frac{a}{b} = x_1$; IV: $x_{n-1} \le x_n$ für ein $n \ge 1$; IBeh: $x_n \le x_{n+1}$

IBew:
$$x_{n+1} = \frac{x_n + a}{b} \stackrel{(IV)}{\geq} \frac{x_{n-1} + a}{b} = x_n.$$

(iii) Nach (i) ist die Folge (x_n) beschränkt und nach (ii) monoton. Damit konvergiert die Folge gegen ein $x \in [0, a]$, welches, wegen $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_{n+1}$, die Gleichung $x = \frac{x+a}{b}$ lösen muss. Man erhält $x = \frac{a}{b-1}$.