WS 06/07 Ausgabe: 06.02.07 freiwillige

Abgabe: 13.02.07

Albrecht Gündel-vom Hofe Jose Mendez

15. Übung zur Analysis II

- 1. Seien $h: \mathbb{R} \longrightarrow \mathbb{R}$, $h(t) = t^3 + t + 1$ und $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, f(x,y) := h(x) h(y).
 - (a) Man zeige: f hat in $M:=[-1,1]\times[-1,1]$ ein Maximum und ein Minimum.
 - (b) Man bestimme die Punkte $\mathbf{p} \in M$, in welchen f maximal bzw. minimal wird.
 - (c) Was passiert, wenn man f verallgemeinert zu

$$f(x,y) := \lambda h(x) + \mu h(y) \quad \lambda, \mu \in \mathbb{R}$$
?

(5 Punkte)

2. Man bestimme und klassifiziere die relativen Extremwerte der Funktion

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad f(x,y) = \sin(x)\cos(y)$$

(5 Punkte)

3. Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ (n+1)—mal stetig differenzierbar auf dem Intervall (a, a+h), h>0. Man zeige:

$$f(a+h) = f(a) + \sum_{i=1}^{n} \frac{f^{(i)}(a)}{i!} h^{i} + \frac{1}{n!} \int_{a}^{a+h} f^{(n+1)}(x) (a+h-x)^{n} dx.$$

(5 Punkte)

- 4. (Präsentationsaufgabe) Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definiert durch $f(x,y) = xy(\frac{x^2}{3} + 1)$.
 - (a) Bestimme die lineare und die quadratische Funktionen, welche mit f bis zur Ordnung eins bzw. zwei in $\mathbf{p} = \mathbf{0} \in \mathbb{R}^2$ übereinstimmen.
 - (b) Bestimme Maxima und Minima von f(x,y) in $M = [-10, 10] \times [-10, 10]$
 - (c) Sei $G := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ Bestimme die Maxima und Minima von f auf $G \subset M$ ohne Anwendung von Lagrange-Multiplikatoren.

(5 Punkte)