Linear and Integer Programming (ADM II)

Martin Skutella
Axel Werner

Torsten Ueckerdt
Jannik Matuschke

Exercise sheet 4

Deadline: Wed, 14 Nov 2007, 12:15 in MA 042

Exercise 14.

Suppose n people start at the same place at time 0 to travel to a destination that is D miles away. They can walk and besides that they have one bicycle at their disposal that carries one person at a time. The walking and bicycling speed of person j is given by w_{j} and b_{j}, respectively. The task is to find the earliest point in time after which all n persons have arrived at the destination.
a) Show that the linear program

$$
\begin{aligned}
\operatorname{minimize} t & \\
\text { subject to } & t-x_{j}-x_{j}^{\prime}-y_{j}-y_{j}^{\prime} \\
t-\sum_{j=1}^{n} y_{j}-\sum_{j=1}^{n} y_{j}^{\prime} & \geq 0 \\
& =D \quad(j=1, \ldots, n) \\
w_{j} x_{j}-w_{j} x_{j}^{\prime}+b_{j} y_{j}-b_{j} y_{j}^{\prime} & =D \quad(j=1, \ldots, n) \\
\sum_{j=1}^{n} b_{j} y_{j}-\sum_{j=1}^{n} b_{j} y_{j}^{\prime} & \leq D \\
x_{j}, x_{j}^{\prime}, y_{j}, y_{j}^{\prime} & \geq 0
\end{aligned} \quad(j=1, \ldots, n)
$$

provides a lower bound on the best possible arrival time of the last person.
b) Write a ZIMPL file and use CPLEX to find lower bounds for the arrival time for the following values:

	D	n	w_{1}, \ldots, w_{n}	b_{1}, \ldots, b_{n}
(i)	10	3	$2,4,2$	$12,16,12$
(ii)	45	9	$3,2,4,3,3,5,4,2,6$	$14,11,15,13,17,17,14,10,18$
(iii)	100	20	$w_{j}=(10+j) / 5$	$b_{j}=(20+j) / 2$

c) (Optional) Give an example for which the optimum of the above linear program is a strictly smaller value than the arrival time of the last person.

Let \mathbf{x} be a basic feasible solution associated with some basis matrix B. Prove:
a) If the reduced cost of every nonbasic variable is positive, then \mathbf{x} is the unique optimal solution.
b) If \mathbf{x} is the unique optimal solution and is nondegenerate, then the reduced cost of every nonbasic variable is positive.

Exercise 16.

12 points
Consider the problem

$$
\begin{array}{rrl}
\operatorname{minimize} & -2 x_{1}-x_{2} \\
\text { subject to } & x_{1}-2 x_{2} & \leq 2 \\
& x_{1}-x_{2} & \leq 2 \\
& x_{1}+x_{2} & \leq 6 \\
& -4 x_{1}+x_{2} & \leq 1 \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

a) Convert the problem into standard form and construct a basic feasible solution at which $\left(x_{1}, x_{2}\right)=(0,0)$.
b) Carry out the simplex algorithm, starting with the basic feasible solution of part a). At each iteration list all basic directions and indicate those that are feasible directions.
c) Draw a graphical representation of the problem in terms of the original variables x_{1}, x_{2}, and indicate the path taken by the simplex algorithm, as well as the basic feasible directions in each iteration.

Exercise 17.

Consider the simplex method applied to a standard form problem and assume that the rows of the matrix \mathbf{A} are linearly independent. For each of the statements below, give either a proof or a counterexample.
a) A variable that has just left the basis cannot reenter in the very next iteration.
b) A variable that has just entered the basis cannot leave in the very next iteration.
c) If there had been an unconstrained variable x_{j} that was replaced by two variables $x_{j}^{+}, x_{j}^{-} \geq 0$ to obtain standard form, then in every iteration at most one of the variables x_{j}^{+}, x_{j}^{-}is nonzero.
d) Let \mathbf{x}^{*} be an optimal basic feasible solution and B a basis for \mathbf{x}^{*}. If there is a "second best" basic feasible solution $\tilde{\mathbf{x}}$ (i.e. we have $\mathbf{c}^{\top} \mathbf{x}>\mathbf{c}^{\top} \tilde{\mathbf{x}}>\mathbf{c}^{\top} \mathbf{x}^{*}$ for every basic feasible solution $\left.\mathbf{x} \neq \tilde{\mathbf{x}}, \mathbf{x}^{*}\right)$, then $\tilde{\mathbf{x}}$ can be obtained from B by exchanging exactly one basic variable.

