Linear and Integer Programming (ADM II)

Martin Skutella Axel Werner Torsten Ueckerdt Jannik Matuschke

Exercise sheet 4

Deadline: Wed, 14 Nov 2007, 12:15 in MA 042

Exercise 14.

10 (+3) points

Suppose n people start at the same place at time 0 to travel to a destination that is D miles away. They can walk and besides that they have one bicycle at their disposal that carries one person at a time. The walking and bicycling speed of person j is given by w_j and b_j , respectively. The task is to find the earliest point in time after which all n persons have arrived at the destination.

a) Show that the linear program

minimize
$$t$$

subject to $t - x_j - x'_j - y_j - y'_j \ge 0$ $(j = 1, ..., n)$
 $t - \sum_{j=1}^n y_j - \sum_{j=1}^n y'_j \ge 0$
 $w_j x_j - w_j x'_j + b_j y_j - b_j y'_j = D$ $(j = 1, ..., n)$
 $\sum_{j=1}^n b_j y_j - \sum_{j=1}^n b_j y'_j \le D$
 $x_j, x'_j, y_j, y'_j \ge 0$ $(j = 1, ..., n)$

provides a lower bound on the best possible arrival time of the last person.

b) Write a ZIMPL file and use CPLEX to find lower bounds for the arrival time for the following values:

		D	n	w_1,\ldots,w_n	b_1,\ldots,b_n
_	(i)	10	3	2, 4, 2	12, 16, 12
	(ii)	45	9	3, 2, 4, 3, 3, 5, 4, 2, 6	14, 11, 15, 13, 17, 17, 14, 10, 18
	(iii)	100	20	$w_j = (10+j)/5$	$b_j = (20+j)/2$

c) (**Optional**) Give an example for which the optimum of the above linear program is a strictly smaller value than the arrival time of the last person.

Exercise 15.

Let \mathbf{x} be a basic feasible solution associated with some basis matrix \mathbf{B} . Prove:

- a) If the reduced cost of every nonbasic variable is positive, then \mathbf{x} is the unique optimal solution.
- b) If \mathbf{x} is the unique optimal solution and is nondegenerate, then the reduced cost of every nonbasic variable is positive.

Exercise 16.

12 points

Consider the problem

minimize $-2x_1 - x_2$ subject to $x_1 - 2x_2 \le 2$ $x_1 - x_2 \le 2$ $x_1 + x_2 \le 6$ $-4x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$

- a) Convert the problem into standard form and construct a basic feasible solution at which $(x_1, x_2) = (0, 0)$.
- b) Carry out the simplex algorithm, starting with the basic feasible solution of part a). At each iteration list all basic directions and indicate those that are feasible directions.
- c) Draw a graphical representation of the problem in terms of the original variables x_1, x_2 , and indicate the path taken by the simplex algorithm, as well as the basic feasible directions in each iteration.

Exercise 17.

8 points

Consider the simplex method applied to a standard form problem and assume that the rows of the matrix \mathbf{A} are linearly independent. For each of the statements below, give either a proof or a counterexample.

- a) A variable that has just left the basis cannot reenter in the very next iteration.
- b) A variable that has just entered the basis cannot leave in the very next iteration.
- c) If there had been an unconstrained variable x_j that was replaced by two variables $x_j^+, x_j^- \ge 0$ to obtain standard form, then in every iteration at most one of the variables x_j^+, x_j^- is nonzero.
- d) Let \mathbf{x}^* be an optimal basic feasible solution and B a basis for \mathbf{x}^* . If there is a "second best" basic feasible solution $\mathbf{\tilde{x}}$ (i.e. we have $\mathbf{c}^{\top}\mathbf{x} > \mathbf{c}^{\top}\mathbf{\tilde{x}} > \mathbf{c}^{\top}\mathbf{x}^*$ for every basic feasible solution $\mathbf{x} \neq \mathbf{\tilde{x}}, \mathbf{x}^*$), then $\mathbf{\tilde{x}}$ can be obtained from B by exchanging exactly one basic variable.