INSTITUT FÜR MATHEMATIK Wintersemester 07/08

Linear and Integer Programming (ADM II)

Martin Skutella Axel Werner

Torsten Ueckerdt Jannik Matuschke

Exercise sheet 7

Deadline: Wed, 5 Dec 2007, 12:15 in MA 042

Exercise 32.

A shipping company transports the delicious Yorkshire Dales Spring Water from a number of springs to various bottling factories in northern England. There are n springs which give rise to a_1, \ldots, a_n pints of spring water per day. The water is then transported to one of m factories, which can bottle b_1, \ldots, b_m pints every day. Transporting a pint of water from spring *i* to factory *j* costs c_{ij} Pounds.

The shipping company aims at managing all the necessary transports at the lowest possible cost.

- a) Define and sketch a graph that models the constraints and set up a linear program for the problem.
- b) State the dual linear program and give an interpretation for the objective function, the constraints and the shadow prices/marginal costs.

Exercise 33.

Consider again the linear program from exercise 16:

 $-2x_1 - x_2$ minimize subject to

Suppose the right-hand side vector is changed to $(1, 3, 4, 1)^{\top}$ and the new constraint $2x_1 - x_2 \le 2$ is added.

Show how the basis corresponding to your original optimal solution, which was (hopefully) the point $(x_1, x_2) = (4, 2)$, can be used to initialise the dual simplex method and solve the new linear program with this approach.

PLEASE TURN OVER

8 points

9 points

Exercise 34.

a) For each of the following polyhedra give the extreme points and extreme rays:

(i)
$$\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$$

(ii)
$$\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 - x_2 = 17, x_1 + x_2 = 42\}$$

(iii)
$$\{(x_1, x_2) \in \mathbb{R}^2 \mid 4x_1 + 2x_2 \ge 8, \ 2x_1 + x_2 \le 8\}$$

- b) Is it possible to express each of the points in the polyhedron in (iii) as a convex combination of its extreme points plus a nonnegative linear combination of its extreme rays? Is this compatible with the resolution theorem?
- c) If P is a polyhedron with at least one extreme point, is it then possible to express an arbitrary point of P as a convex combination of its extreme points plus a nonnegative multiple of a single extreme ray?

Exercise 35.

Consider a linear programming problem in standard form under the usual asymption that the rows of the matrix \mathbf{A} are linearly independent. Suppose that the columns $\mathbf{A}_1, \ldots, \mathbf{A}_m$ form a basis for an optimal solution. Let $\overline{\mathbf{A}}$ be some vector of the correct dimension and suppose the column \mathbf{A}_1 is changed to $\overline{\mathbf{A}}_1 := \mathbf{A}_1 + \delta \overline{\mathbf{A}}$.

Consider the matrix $\mathbf{B}(\delta)$, consisting of the columns $\overline{\mathbf{A}}_1, \mathbf{A}_2, \ldots, \mathbf{A}_m$. Let $[\delta_1, \delta_2]$ be a closed interval such that $0 \in [\delta_1, \delta_2]$ and det $\mathbf{B}(\delta) \neq 0$ for all $\delta \in [\delta_1, \delta_2]$.

Show that the subset of $[\delta_1, \delta_2]$ for which $\mathbf{B}(\delta)$ is an optimal basis is also a closed interval.

Exercise 36.

While solving a standard form linear program

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

using the simplex method, we arrive at the following tableau:

	x_1	x_2	x_3	x_4	x_5
	0	0	x_3 \overline{c}_3	0	\overline{c}_5
$x_2 = 1$	0	1	-1	0	β
$x_4 = 2$	0	0	2	1	γ
$x_2 = 1$ $x_4 = 2$ $x_1 = 3$	1	0	4	0	δ

Additionally, suppose that the last three columns of the matrix \mathbf{A} form an identity matrix.

PLEASE TURN OVER

5 points

(Tutorial session)

- a) Give necessary and sufficient conditions for the coefficients in the tableau such that the basis described by this tableau is optimal.
- b) Assume that this basis is optimal and that $\overline{c}_3 = 0$. Find an optimal basic feasible solution, other than the one described by this tableau.
- c) Suppose that $\gamma > 0$. Show that there exists an optimal basic feasible solution, regardless of the values of \overline{c}_3 and \overline{c}_5 .
- d) Assume that the basis associated with the tableau is optimal. Suppose that b_1 in the original problem is replaced by $b_1 + \varepsilon$. Give upper and lower bounds on ε such that the basis remains optimal.
- e) Assume that the basis associated with the tableau is optimal. Suppose that c_1 in the original problem is replaced by $c_1 + \varepsilon$. Give upper and lower bounds on ε such that the basis remains optimal.

Exercise 37.

(Tutorial session)

Prove the following statements:

- a) $\mathbf{A}\mathbf{x} < \mathbf{0}$ infeasible \iff there exists some $\mathbf{y} \ge \mathbf{0}$ with $\mathbf{y} \ne \mathbf{0}$ such that $\mathbf{y}^{\top}\mathbf{A} = \mathbf{0}$. (P. Gordan 1873)
- b) $\mathbf{A}\mathbf{x} = \mathbf{0}, \ \mathbf{x} > \mathbf{0}$ infeasible \iff there exists some \mathbf{y} such that $\mathbf{y}^{\top}\mathbf{A} \ge \mathbf{0}$ and $\mathbf{y}^{\top}\mathbf{A} \ne \mathbf{0}$. (E. Stiemke 1915)
- c) $\mathbf{A}\mathbf{x} < \mathbf{0}, \mathbf{x} \ge \mathbf{0}$ infeasible \iff there exists some $\mathbf{y} \ge \mathbf{0}$ with $\mathbf{y} \ne \mathbf{0}$ such that $\mathbf{y}^{\top}\mathbf{A} \ge \mathbf{0}$. (J. A. Ville 1938)
- d) $\mathbf{A}\mathbf{x} \ge \mathbf{0}, \ \mathbf{x} \ge \mathbf{0}$ has no solution with $x_k > 0 \iff$ there exists some $\mathbf{y} \ge \mathbf{0}$ such that $\mathbf{y}^{\top}\mathbf{A} \le \mathbf{0}$ and $\sum_{i=1}^{m} a_{ik}y_i < 0$. (A. W. Tucker 1956)

The first

* Umtrunk *

will take place on **Thu, 6 Dec** at **18:00** in **Café Campus**, directly behind the Mathematics Building. Hope to see you there!