Linear and Integer Programming (ADM II)

Martin Skutella
Axel Werner

Torsten Ueckerdt

Jannik Matuschke

Exercise sheet 10

Deadline: Wed, 9 Jan 2008, 12:15 in MA 042

Exercise 48.

10 () points

Santa Claus's cookie kitchen needs to prepare the cookies for this year's christmas. The recipe book of Santa's grandma Mary contains recipes for n different cookie types, ranging from simple chocolate cookies to intricate almond and peanut butter cookies, even raisin and rum cookies (for the older children).
Santa needs at least c_{i} cookies of type i that will then be packed by his gift-wrapping elves and distributed to the well-behaved children by himself. There are m ingredients and each cookie of type i needs an amount of $a_{k i}$ units of ingredient k. Thanks to Santa's shopping elves all the ingredients are already in stock, namely z_{k} units of each ingredient k. It is important that everything is used up to make room for Easter Bunny's easter eggs after christmas.
Baking one cookie of type i takes t_{i} minutes and we assume that the baking elves are not very bright, so they need $\ell \cdot t_{i}$ minutes to bake ℓ cookies of type i. Unfortunately, christmas is drawing near, so Santa wants to get everything done as soon as possible.
Help Santa's planning elves by setting up a linear program that solves the problem.

Exercise 49.
A polyhedron $P=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{A x} \geq \mathbf{b}\right\}$ is defined to be full-dimensional if it has positive volume. Assume that P is bounded and all rows of \mathbf{A} are nonzero. Show that the following statements are equivalent:
(i) P is full-dimensional.
(ii) There exists a point $\mathbf{x} \in P$ such that $\mathbf{A x}>\mathbf{b}$.
(iii) There are $n+1$ extreme points of P that do not lie on a common hyperplane.

Exercise 50.

How can one reduce problems of the form

$$
\text { Find } \mathbf{x} \in \mathbb{R}^{n} \text { s.t. } A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \leq \mathbf{0}, \quad A \in \mathbb{Q}^{m \times n}, \mathbf{b} \in \mathbb{Q}^{m}
$$

to problems of the form

$$
\text { Find } \mathbf{x} \in \mathbb{R}^{n} \text { s.t. } A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \leq \mathbf{0}, \quad A \in \mathbb{Z}^{m \times n}, \mathbf{b} \in \mathbb{Z}^{m} ?
$$

How does the input length in the bit model change with this reduction?

Exercise 51.

Let $s \in \mathbb{N}$ and

$$
\mathbf{A}:=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1 \\
2^{s} & 1
\end{array}\right) \quad \text { and } \quad \mathbf{b}:=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) .
$$

Furthermore, let $P:=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid \mathbf{A x} \geq \mathbf{b}\right\}$. Find a feasible solution with the ellipsoid method for $s=0$ and $s=1$.

Exercise 52.

Let $P=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{A x} \geq \mathbf{b}\right\}$ be a bounded full-dimensional polyhedron with at least one extreme point. Consider the linear program

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b}
\end{aligned}
$$

and let z be the optimal cost. We assume that the entries of \mathbf{A}, \mathbf{b} and \mathbf{c} are integer, and have absolute value bounded by U. Let $\varepsilon>0$. Prove that the sliding objective ellipsoid method finds a solution \mathbf{x}_{t} with $\operatorname{cost} \mathbf{c}^{\top} \mathbf{x}_{t} \leq z+\varepsilon$ after a number of iterations t polynomial in $n, \log U$ and $\log (1 / \varepsilon)$.

Exercise 53.

(Tutorial session)
Given an undirected graph $G=(V, E)$, two distinct nodes $s, t \in V$ and weights c_{e} for all $e \in E$, let \mathcal{K} be the set of all paths from s to t. We would like to find a minimum weight set of edges that intersects every path in \mathcal{K}. One way of formulating this problem is as follows:

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} \\
\text { subject to } & \sum_{e \in K} x_{e} \geq 1 \quad \forall K \in \mathcal{K} \\
& 0 \leq x_{e} \leq 1 \quad \forall e \in E
\end{array}
$$

One can show that the extreme points of the feasible set are vectors in $\{0,1\}^{E}$, and that an optimal basic feasible solution indeed corresponds to a minimum cut. Prove that the associated separation problem can be solved in polynomial time.

Exercise 54.

Given a complete undirected graph $G=(V, E)$ with weights c_{e} for $e \in E$ and a function $f: 2^{V} \rightarrow \mathbb{R}$, consider the problem

$$
\begin{array}{cll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} & \\
\text { subject to } & \sum_{e \in \delta(S)} x_{e} \geq f(S) & \forall \emptyset \neq S \varsubsetneqq V \\
& 0 \leq x_{e} \leq 1 & \forall e \in E
\end{array}
$$

The above linear programming problem provides a lower bound for the optimal cost of the corresponding integer programming problem, in which x_{e} must take values 0 or 1 . Solve the separation problem for the linear programs corresponding to the following cases.
a) Let

$$
f(S):=\max _{e \in \delta(S)} r_{e}
$$

where $r_{e} \geq 0$ for all $e \in E$. The corresponding integer programming problem is called the survivable network design problem.
b) Given a set $T \subset V$, let

$$
f(S):= \begin{cases}1, & \text { if } S \cap T \neq \emptyset, T \\ 0, & \text { otherwise }\end{cases}
$$

The corresponding integer programming problem is called the Steiner tree problem.

Exercise 55.

Find a 2-dimensional ellipsoid of minimal volume that contains the positive semi-disc $\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2} \leq 1, x_{2} \geq 0\right\}$.

We wish everyone a wonderful christmas and a great year 2008!

