Linear and Integer Programming (ADM II)

Martin Skutella

TU Berlin

WS 2007/08

• • = • •

-

Let $B = (A_{B(1)} \dots A_{B(m)})$ be a basis matrix with a corresponding basic feasible solution x.

• Let
$$\overline{c}^T := c^T - c_B^T B^{-1} A$$
. If $\overline{c} \ge 0$, then STOP;
else choose j with $\overline{c}_j < 0$.

O Let $u := B^{-1}A_j$. If $u \le 0$, then STOP (optimal cost is $-\infty$).

3 Let
$$\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell}$$
 for some $\ell \in \{1, \dots, m\}$.

Form new basis by replacing A_{B(l)} with A_j; corresponding basic feasible solution y is given by

$$y_j := \theta^*$$
 and $y_{B(i)} = x_{B(i)} - \theta^* u_i$ for $i \neq \ell$.

Remark

Let $B = (A_{B(1)} \dots A_{B(m)})$ be a basis matrix with a corresponding basic feasible solution x.

• Let
$$\overline{c}^T := c^T - c_B^T B^{-1} A$$
. If $\overline{c} \ge 0$, then STOP;
else choose j with $\overline{c}_j < 0$.

② Let $u := B^{-1}A_j$. If $u \le 0$, then STOP (optimal cost is $-\infty$).

3 Let
$$\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell}$$
 for some $\ell \in \{1, \ldots, m\}$.

Form new basis by replacing A_{B(l)} with A_j; corresponding basic feasible solution y is given by

$$y_j := heta^*$$
 and $y_{B(i)} = x_{B(i)} - heta^* u_i$ for $i \neq \ell$.

Remark

Let $B = (A_{B(1)} \dots A_{B(m)})$ be a basis matrix with a corresponding basic feasible solution x.

• Let
$$\overline{c}^T := c^T - c_B^T B^{-1} A$$
. If $\overline{c} \ge 0$, then STOP;
else choose j with $\overline{c}_j < 0$.

2 Let $u := B^{-1}A_i$. If $u \le 0$, then STOP (optimal cost is $-\infty$).

3 Let
$$\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell}$$
 for some $\ell \in \{1, \ldots, m\}$.

Form new basis by replacing A_{B(l)} with A_j; corresponding basic feasible solution y is given by

$$y_j := \theta^*$$
 and $y_{B(i)} = x_{B(i)} - \theta^* u_i$ for $i \neq \ell$.

Remark

Let $B = (A_{B(1)} \dots A_{B(m)})$ be a basis matrix with a corresponding basic feasible solution x.

$$y_j := \theta^*$$
 and $y_{B(i)} = x_{B(i)} - \theta^* u_i$ for $i \neq \ell$.

Remark

Let $B = (A_{B(1)} \dots A_{B(m)})$ be a basis matrix with a corresponding basic feasible solution x.

$$y_j := \theta^*$$
 and $y_{B(i)} = x_{B(i)} - \theta^* u_i$ for $i \neq \ell$.

Remark

Let $B = (A_{B(1)} \dots A_{B(m)})$ be a basis matrix with a corresponding basic feasible solution x.

$$y_j := \theta^*$$
 and $y_{B(i)} = x_{B(i)} - \theta^* u_i$ for $i \neq \ell$.

Remark

We say that the nonbasic variable x_j enters the basis and the basic variable $x_{B(\ell)}$ leaves the basis.

Martin Skutella (TU Berlin) Linear and Integer Programming (ADM II)

Correctness of the simplex method

Theorem

Assume that the feasible set is nonempty and that every basic feasible solution is nondegenerate. Then, the simplex method terminates after a finite number of iterations. At termination, there are the following two possibilities:

- We have an optimal basis matrix B and an associated basic feasible solution x which is optimal.
- We have found a vector d satisfying Ad = 0, $d \ge 0$, and $c^T d < 0$, and the optimal cost is $-\infty$.

Prof sketch.

The simplex method makes progress in every iteration. Since there are only finitely many different basic feasible solutions, it stops after a finite number of iteration.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Correctness of the simplex method

Theorem

Assume that the feasible set is nonempty and that every basic feasible solution is nondegenerate. Then, the simplex method terminates after a finite number of iterations. At termination, there are the following two possibilities:

- We have an optimal basis matrix B and an associated basic feasible solution x which is optimal.
- We have found a vector d satisfying Ad = 0, $d \ge 0$, and $c^T d < 0$, and the optimal cost is $-\infty$.

Prof sketch.

The simplex method makes progress in every iteration. Since there are only finitely many different basic feasible solutions, it stops after a finite number of iteration.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- An iteration of the simplex method can also be applied if x is a degenerate basic feasible solution.
- In this case it might happen that $\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} = 0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)} < 0$.
- Thus, y = x + θ*d = x and the current basic feasible solution does not change.
- But replacing A_{B(l)} with A_j still yields a new basis with associated basic feasible solution y = x.

Remark

Even if θ^* is positive, more than one of the original basic variables may become zero at the new point $x + \theta^* d$. Since only one of them leaves the basis, the new basic feasible solution y is degenerate.

- An iteration of the simplex method can also be applied if x is a degenerate basic feasible solution.
- In this case it might happen that $\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} = 0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)} < 0$.
- Thus, y = x + θ*d = x and the current basic feasible solution does not change.
- But replacing A_{B(l)} with A_j still yields a new basis with associated basic feasible solution y = x.

Remark

Even if θ^* is positive, more than one of the original basic variables may become zero at the new point $x + \theta^* d$. Since only one of them leaves the basis, the new basic feasible solution y is degenerate.

- An iteration of the simplex method can also be applied if x is a degenerate basic feasible solution.
- In this case it might happen that $\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} = 0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)} < 0$.
- Thus, y = x + θ*d = x and the current basic feasible solution does not change.
- But replacing A_{B(l)} with A_j still yields a new basis with associated basic feasible solution y = x.

Remark

Even if θ^* is positive, more than one of the original basic variables may become zero at the new point $x + \theta^* d$. Since only one of them leaves the basis, the new basic feasible solution y is degenerate.

- 4 同 6 4 日 6 4 日 6

- An iteration of the simplex method can also be applied if x is a degenerate basic feasible solution.
- In this case it might happen that $\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} = 0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)} < 0$.
- Thus, y = x + θ*d = x and the current basic feasible solution does not change.
- But replacing A_{B(l)} with A_j still yields a new basis with associated basic feasible solution y = x.

Remark

Even if θ^* is positive, more than one of the original basic variables may become zero at the new point $x + \theta^* d$. Since only one of them leaves the basis, the new basic feasible solution y is degenerate.

(人間) トイヨト イヨト

- An iteration of the simplex method can also be applied if x is a degenerate basic feasible solution.
- In this case it might happen that $\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} = 0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)} < 0$.
- Thus, $y = x + \theta^* d = x$ and the current basic feasible solution does not change.
- But replacing A_{B(l)} with A_j still yields a new basis with associated basic feasible solution y = x.

Remark

Even if θ^* is positive, more than one of the original basic variables may become zero at the new point $x + \theta^* d$. Since only one of them leaves the basis, the new basic feasible solution y is degenerate.

< 同 ト く ヨ ト く ヨ ト

Example

Question

How to choose *j* with $\overline{c}_j < 0$ and ℓ with $\frac{x_{B(\ell)}}{u_\ell} = \min_{i:u_i>0} \frac{x_{B(i)}}{u_i}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of *j* is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest j with c
 _j < 0. (very simple; no need to compute entire vector c
 ; usually leads to many iterations)
- steepest descent rule: choose j such that c
 _j < 0 is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose j such that θ* c
 j is minimal.
 (computationally expensive; used for large problems; usually leads to very few iterations)

Question

How to choose *j* with $\overline{c}_j < 0$ and ℓ with $\frac{x_{B(\ell)}}{u_\ell} = \min_{i:u_i>0} \frac{x_{B(i)}}{u_i}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of j is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest j with c
 _j < 0. (very simple; no need to compute entire vector c
 ; usually leads to many iterations)
- steepest descent rule: choose j such that c
 _j < 0 is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose j such that θ^{*}c
 j is minimal.
 (computationally expensive; used for large problems; usually leads to very few iterations)

Question

How to choose j with $\overline{c}_j < 0$ and ℓ with $\frac{x_{B(\ell)}}{u_\ell} = \min_{i:u_i>0} \frac{x_{B(i)}}{u_i}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of j is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest j with c
 _j < 0. (very simple; no need to compute entire vector c
 ; usually leads to many iterations)
- steepest descent rule: choose j such that c
 _j < 0 is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose j such that θ^{*}c
 j is minimal.
 (computationally expensive; used for large problems; usually leads to very few iterations)

Question

How to choose j with $\overline{c}_j < 0$ and ℓ with $\frac{x_{B(\ell)}}{u_\ell} = \min_{i:u_i>0} \frac{x_{B(i)}}{u_i}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of j is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest j with c
 _j < 0. (very simple; no need to compute entire vector c
 ; usually leads to many iterations)
- steepest descent rule: choose j such that c
 _j < 0 is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose j such that θ^{*}c
 j is minimal.
 (computationally expensive; used for large problems; usually leads to very few iterations)

- 4 @ > - 4 @ > - 4 @ >

Question

How to choose j with $\overline{c}_j < 0$ and ℓ with $\frac{x_{B(\ell)}}{u_\ell} = \min_{i:u_i>0} \frac{x_{B(i)}}{u_i}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of j is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest j with c
 _j < 0. (very simple; no need to compute entire vector c
 ; usually leads to many iterations)
- steepest descent rule: choose j such that c
 _j < 0 is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose j such that θ^{*}c
 j is minimal.
 (computationally expensive; used for large problems; usually leads to very few iterations)

3.3 Implementations of the simplex method

- The revised simplex method
- The full tableau implementation
- Comparison
- Practical performance ehancements

The revised simplex method

Observation

In order to execute one iteration of the simplex method efficiently, it suffices to know $B(1), \ldots, B(m)$, the inverse B^{-1} of the basis matrix and the input data A, b, and c. It is then easy to compute:

$$x_B = B^{-1}b \qquad \overline{c}^T = c^T - c_B^T B^{-1}A$$
$$u = B^{-1}A_j \qquad \theta^* = \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell}$$

The new basis matrix is then

$$\overline{B} = (A_{B(1)} \dots A_{B(\ell-1)} A_j A_{B(\ell+1)} \dots A_{B(m)})$$

Question

How to obtain \overline{B}^{-1} efficiently?

Martin Skutella (TU Berlin)

イロト イポト イヨト イヨト

- Notice that $B^{-1}\overline{B} = (e_1 \dots e_{\ell-1} u e_{\ell+1} \dots e_m).$
- By elementary linear algebra, \overline{B}^{-1} can be obtained from B^{-1} as follows:

Multiply the ℓ th row of B^{-1} with $1/u_{\ell}$; then subtract u_i times the resulting ℓ th row from the *i*th row, for $i \neq \ell$.

- These are exactly the elementary row operations needed to turn $B^{-1}\overline{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.
- Equivalently:

Obtaining \overline{B}^{-1} from B^{-1}

- Notice that $B^{-1}\overline{B} = (e_1 \dots e_{\ell-1} u e_{\ell+1} \dots e_m).$
- By elementary linear algebra, \overline{B}^{-1} can be obtained from B^{-1} as follows:

Multiply the ℓ th row of B^{-1} with $1/u_{\ell}$; then subtract u_i times the resulting ℓ th row from the *i*th row, for $i \neq \ell$.

- These are exactly the elementary row operations needed to turn $B^{-1}\overline{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.

• Equivalently:

Obtaining \overline{B}^{-1} from B^{-1}

- Notice that $B^{-1}\overline{B} = (e_1 \dots e_{\ell-1} u e_{\ell+1} \dots e_m).$
- By elementary linear algebra, \overline{B}^{-1} can be obtained from B^{-1} as follows:

Multiply the ℓ th row of B^{-1} with $1/u_{\ell}$; then subtract u_i times the resulting ℓ th row from the *i*th row, for $i \neq \ell$.

- These are exactly the elementary row operations needed to turn $B^{-1}\overline{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.

• Equivalently:

Obtaining \overline{B}^{-1} from B^{-1}

- Notice that $B^{-1}\overline{B} = (e_1 \dots e_{\ell-1} u e_{\ell+1} \dots e_m).$
- By elementary linear algebra, \overline{B}^{-1} can be obtained from B^{-1} as follows:

Multiply the ℓ th row of B^{-1} with $1/u_{\ell}$; then subtract u_i times the resulting ℓ th row from the *i*th row, for $i \neq \ell$.

- These are exactly the elementary row operations needed to turn $B^{-1}\overline{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.

• Equivalently:

Obtaining \overline{B}^{-1} from B^{-1}

- Notice that $B^{-1}\overline{B} = (e_1 \dots e_{\ell-1} u e_{\ell+1} \dots e_m).$
- By elementary linear algebra, \overline{B}^{-1} can be obtained from B^{-1} as follows:

Multiply the ℓ th row of B^{-1} with $1/u_{\ell}$; then subtract u_i times the resulting ℓ th row from the *i*th row, for $i \neq \ell$.

- These are exactly the elementary row operations needed to turn $B^{-1}\overline{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.
- Equivalently:

Obtaining \overline{B}^{-1} from B^{-1}