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An iteration of the simplex method
Let B = (AB(1) . . .AB(m)) be a basis matrix with a corresponding basic
feasible solution x .

1 Let cT := cT − cB
T B−1A. If c ≥ 0, then STOP;

else choose j with c j < 0.

2 Let u := B−1Aj . If u ≤ 0, then STOP (optimal cost is −∞).

3 Let θ∗ := min
i :ui>0

xB(i)

ui
=

xB(`)

u`
for some ` ∈ {1, . . . ,m}.

4 Form new basis by replacing AB(`) with Aj ; corresponding basic
feasible solution y is given by

yj := θ∗ and yB(i) = xB(i) − θ∗ui for i 6= `.

Remark

We say that the nonbasic variable xj enters the basis and the basic variable
xB(`) leaves the basis.
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Correctness of the simplex method

Theorem

Assume that the feasible set is nonempty and that every basic feasible
solution is nondegenerate. Then, the simplex method terminates after a
finite number of iterations. At termination, there are the following two
possibilities:

1 We have an optimal basis matrix B and an associated basic feasible
solution x which is optimal.

2 We have found a vector d satisfying Ad = 0, d ≥ 0, and cT d < 0,
and the optimal cost is −∞.

Prof sketch.

The simplex method makes progress in every iteration. Since there are
only finitely many different basic feasible solutions, it stops after a finite
number of iteration.
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The simplex method for degenerate problems

An iteration of the simplex method can also be applied if x is a
degenerate basic feasible solution.

In this case it might happen that θ∗ := min
i :ui>0

xB(i)

ui
=

xB(`)

u`
= 0 if

some basic variable xB(`) is zero and dB(`) < 0.

Thus, y = x + θ∗d = x and the current basic feasible solution does
not change.

But replacing AB(`) with Aj still yields a new basis with associated
basic feasible solution y = x .

Remark

Even if θ∗ is positive, more than one of the original basic variables may
become zero at the new point x + θ∗d . Since only one of them leaves the
basis, the new basic feasible solution y is degenerate.
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Example
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Pivot Selection

Question

How to choose j with c j < 0 and ` with
xB(`)

u`
= min

i :ui>0

xB(i)

ui
if several

possible choices exists in an iteration of the simplex algorithm?

The choice of j is critical for the overall behavior of the simplex method.
Three popular choices are:

smallest subscript rule: choose smallest j with c j < 0.
(very simple; no need to compute entire vector c ; usually leads to
many iterations)

steepest descent rule: choose j such that c j < 0 is minimal.
(relatively simple; commonly used for mid-size problems; does not
necessarily yield the best neighboring solution)

best improvement rule: choose j such that θ∗c j is minimal.
(computationally expensive; used for large problems; usually leads to
very few iterations)
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3.3 Implementations of the simplex method

The revised simplex method

The full tableau implementation

Comparison

Practical performance ehancements
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The revised simplex method

Observation

In order to execute one iteration of the simplex method efficiently, it
suffices to know B(1), . . . ,B(m), the inverse B−1 of the basis matrix and
the input data A, b, and c . It is then easy to compute:

xB = B−1b cT = cT − cB
T B−1A

u = B−1Aj θ∗ = min
i :ui>0

xB(i)

ui
=

xB(`)

u`

The new basis matrix is then

B =
(
AB(1) . . .AB(`−1)AjAB(`+1) . . .AB(m)

)
Question

How to obtain B
−1

efficiently?
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How to obtain B
−1

efficiently?

Notice that B−1B = (e1 . . . e`−1 u e`+1 . . . em).

By elementary linear algebra, B
−1

can be obtained from B−1 as
follows:
Multiply the `th row of B−1 with 1/u`; then subtract ui times the
resulting `th row from the ith row, for i 6= `.

These are exactly the elementary row operations needed to turn
B−1B into the identity matrix!

Elementary row operations are the same as multiplying the matrix
with corresponding elementary matrices from the left hand side.

Equivalently:

Obtaining B
−1

from B−1

Apply elementary row operations to the matrix (B−1|u) to make the last
column equal to the unit vector e`. The first m columns of the resulting

matrix form the inverse B
−1

of the new basis matrix B.
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