# Linear and Integer Programming (ADM II) 

Martin Skutella<br>TU Berlin<br>WS 2007/08

An iteration of the simplex method
Let $B=\left(A_{B(1)} \ldots A_{B(m)}\right)$ be a basis matrix with a corresponding basic feasible solution $x$.
(1) Let $\bar{c}^{\top}:=c^{\top}-c_{B}^{\top} B^{-1} A$. If $\bar{c} \geq 0$, then STOP; else choose $j$ with $\bar{c}_{j}<0$.

(1) Form new basis by replacing $A_{B(\ell)}$ with $A_{j}$; corresponding basic feasible solution $y$ is given by

Remark
We say that the nonbasic variable $x_{j}$ enters the basis and the basic variable $x_{B(\ell)}$ leaves the basis.

An iteration of the simplex method
Let $B=\left(A_{B(1)} \ldots A_{B(m)}\right)$ be a basis matrix with a corresponding basic feasible solution $x$.
(1) Let $\bar{c}^{T}:=c^{T}-c_{B}{ }^{T} B^{-1} A$. If $\bar{c} \geq 0$, then STOP; else choose $j$ with $\bar{c}_{j}<0$.

(9) Form new basis by replacing $A_{B(\ell)}$ with $A_{j}$; corresponding basic feasible solution $y$ is given by

Remark
We say that the nonbasic variable $x_{j}$ enters the basis and the basic variable $x_{B(\ell)}$ leaves the basis.

An iteration of the simplex method
Let $B=\left(A_{B(1)} \ldots A_{B(m)}\right)$ be a basis matrix with a corresponding basic feasible solution $x$.
(1) Let $\bar{c}^{T}:=c^{T}-c_{B}{ }^{T} B^{-1} A$. If $\bar{c} \geq 0$, then STOP; else choose $j$ with $\bar{c}_{j}<0$.
(2) Let $u:=B^{-1} A_{j}$. If $u \leq 0$, then STOP (optimal cost is $-\infty$ ).


[^0]An iteration of the simplex method
Let $B=\left(A_{B(1)} \ldots A_{B(m)}\right)$ be a basis matrix with a corresponding basic feasible solution $x$.
(1) Let $\bar{c}^{T}:=c^{T}-c_{B}{ }^{T} B^{-1} A$. If $\bar{c} \geq 0$, then STOP; else choose $j$ with $\bar{c}_{j}<0$.
(2) Let $u:=B^{-1} A_{j}$. If $u \leq 0$, then STOP (optimal cost is $-\infty$ ).
(3) Let $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}$ for some $\ell \in\{1, \ldots, m\}$.
(-) Form new basis by replacing $A_{B(\ell)}$ with $A_{j}$; corresponding basic feasible solution $y$ is given by


We say that the nonbasic variable $x_{j}$ enters the basis and the basic variable leaves the basis.

## An iteration of the simplex method

Let $B=\left(A_{B(1)} \ldots A_{B(m)}\right)$ be a basis matrix with a corresponding basic feasible solution $x$.
(1) Let $\bar{c}^{T}:=c^{T}-c_{B}{ }^{T} B^{-1} A$. If $\bar{c} \geq 0$, then STOP; else choose $j$ with $\bar{c}_{j}<0$.
(2) Let $u:=B^{-1} A_{j}$. If $u \leq 0$, then STOP (optimal cost is $-\infty$ ).
(3) Let $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}$ for some $\ell \in\{1, \ldots, m\}$.
(9) Form new basis by replacing $A_{B(\ell)}$ with $A_{j}$; corresponding basic feasible solution $y$ is given by

$$
y_{j}:=\theta^{*} \quad \text { and } \quad y_{B(i)}=x_{B(i)}-\theta^{*} u_{i} \quad \text { for } i \neq \ell
$$

## We say that the nonbasic variable $x_{j}$ enters the basis and the basic variable

 leaves the basis.
## An iteration of the simplex method

Let $B=\left(A_{B(1)} \ldots A_{B(m)}\right)$ be a basis matrix with a corresponding basic feasible solution $x$.
(1) Let $\bar{c}^{T}:=c^{T}-c_{B}{ }^{T} B^{-1} A$. If $\bar{c} \geq 0$, then STOP; else choose $j$ with $\bar{c}_{j}<0$.
(2) Let $u:=B^{-1} A_{j}$. If $u \leq 0$, then STOP (optimal cost is $-\infty$ ).
(3) Let $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}$ for some $\ell \in\{1, \ldots, m\}$.
(9) Form new basis by replacing $A_{B(\ell)}$ with $A_{j}$; corresponding basic feasible solution $y$ is given by

$$
y_{j}:=\theta^{*} \quad \text { and } \quad y_{B(i)}=x_{B(i)}-\theta^{*} u_{i} \quad \text { for } i \neq \ell
$$

## Remark

We say that the nonbasic variable $x_{j}$ enters the basis and the basic variable $x_{B(\ell)}$ leaves the basis.

## Correctness of the simplex method

## Theorem

Assume that the feasible set is nonempty and that every basic feasible solution is nondegenerate. Then, the simplex method terminates after a finite number of iterations. At termination, there are the following two possibilities:
(1) We have an optimal basis matrix $B$ and an associated basic feasible solution $x$ which is optimal.
(2) We have found a vector $d$ satisfying $A d=0, d \geq 0$, and $c^{T} d<0$, and the optimal cost is $-\infty$.
$\square$ only finitely many different basic feasible solutions, it stops after a finite

## Correctness of the simplex method

## Theorem

Assume that the feasible set is nonempty and that every basic feasible solution is nondegenerate. Then, the simplex method terminates after a finite number of iterations. At termination, there are the following two possibilities:
(1) We have an optimal basis matrix $B$ and an associated basic feasible solution $x$ which is optimal.
(2) We have found a vector $d$ satisfying $A d=0, d \geq 0$, and $c^{T} d<0$, and the optimal cost is $-\infty$.

## Prof sketch.

The simplex method makes progress in every iteration. Since there are only finitely many different basic feasible solutions, it stops after a finite number of iteration.

## The simplex method for degenerate problems

- An iteration of the simplex method can also be applied if $x$ is a degenerate basic feasible solution.
- In this case it might happen that $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B}(i)}{u_{i}}=\frac{x_{B}(\ell)}{u_{\ell}}=0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)}<0$.
- Thus, $y=x+\theta^{*} d=x$ and the current basic feasible solution does not change.
- But replacing $A_{B(\ell)}$ with $A_{j}$ still yields a new basis with associated basic feasible solution $y=x$.

```
Remark
Even if A* is positive, more than one of the original basic variables may
become zero at the new point x+ 目d. Since only one of them leaves the
basis, the new basic feasible solution }y\mathrm{ is degenerate.
```


## The simplex method for degenerate problems

- An iteration of the simplex method can also be applied if $x$ is a degenerate basic feasible solution.
- In this case it might happen that $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}=0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)}<0$.
- But replacing $A_{B(\ell)}$ with $A_{j}$ still yields a new basis with associated basic feasible solution $y=x$

> Remark
> Even if $\theta^{*}$ is positive, more than one of the original basic variables may
> become zero at the new point $x+\theta^{*} d$. Since only one of them leaves the basis, the new basic feasible solution $y$ is degenerate.

## The simplex method for degenerate problems

- An iteration of the simplex method can also be applied if $x$ is a degenerate basic feasible solution.
- In this case it might happen that $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}=0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)}<0$.
- Thus, $y=x+\theta^{*} d=x$ and the current basic feasible solution does not change.
- But replacing $A_{B(\ell)}$ with $A_{j}$ still yields a new basis with associated basic feasible solution $y=x$.

Even if $\theta^{*}$ is positive, more than one of the original basic variables may
become zero at the new point $x+\theta^{*} d$. Since only one of them leaves the basis, the new basic feasible solution $y$ is degenerate.

## The simplex method for degenerate problems

- An iteration of the simplex method can also be applied if $x$ is a degenerate basic feasible solution.
- In this case it might happen that $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}=0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)}<0$.
- Thus, $y=x+\theta^{*} d=x$ and the current basic feasible solution does not change.
- But replacing $A_{B(\ell)}$ with $A_{j}$ still yields a new basis with associated basic feasible solution $y=x$.


## The simplex method for degenerate problems

- An iteration of the simplex method can also be applied if $x$ is a degenerate basic feasible solution.
- In this case it might happen that $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}=0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)}<0$.
- Thus, $y=x+\theta^{*} d=x$ and the current basic feasible solution does not change.
- But replacing $A_{B(\ell)}$ with $A_{j}$ still yields a new basis with associated basic feasible solution $y=x$.


## Remark

Even if $\theta^{*}$ is positive, more than one of the original basic variables may become zero at the new point $x+\theta^{*} d$. Since only one of them leaves the basis, the new basic feasible solution $y$ is degenerate.

## Example



## Pivot Selection

## Question

How to choose $j$ with $\bar{c}_{j}<0$ and $\ell$ with $\frac{x_{B(\ell)}}{u_{\ell}}=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of $j$ is critical for the overall behavior of the simplex method Three popular choices are:

- smallest subscript rule: choose smallest $j$ with $\bar{c}_{j}<0$ (very simple; no need to compute entire vector $\bar{c}$; usually leads to many iterations)
- steepest descent rule: choose $j$ such that $\bar{c}_{j}<0$ is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose $j$ such that $\theta^{*} \bar{c}_{j}$ is minimal. (computationally expensive; used for large problems; usually leads to very few iterations)


## Pivot Selection

## Question

How to choose $j$ with $\bar{c}_{j}<0$ and $\ell$ with $\frac{x_{B(\ell)}}{u_{\ell}}=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of $j$ is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest $j$ with $\bar{c}_{j}<0$ (very simple; no need to compute entire vector $\bar{c}$; usually leads to many iterations)
- steepest descent rule: choose $j$ such that $\bar{c}_{j}<0$ is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose $j$ such that $\theta^{*} \bar{c}_{j}$ is minimal. (computationally expensive; used for large problems; usually leads to very few iterations)


## Pivot Selection

## Question

How to choose $j$ with $\bar{c}_{j}<0$ and $\ell$ with $\frac{x_{B(\ell)}}{u_{\ell}}=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of $j$ is critical for the overall behavior of the simplex method.
Three popular choices are:

- smallest subscript rule: choose smallest $j$ with $\bar{c}_{j}<0$. (very simple; no need to compute entire vector $\bar{c}$; usually leads to many iterations)



## Pivot Selection

## Question

How to choose $j$ with $\bar{c}_{j}<0$ and $\ell$ with $\frac{x_{B(\ell)}}{u_{\ell}}=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of $j$ is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest $j$ with $\bar{c}_{j}<0$. (very simple; no need to compute entire vector $\bar{c}$; usually leads to many iterations)
- steepest descent rule: choose $j$ such that $\bar{c}_{j}<0$ is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
best improvement rule: choose $j$ such that $\theta^{*} \bar{c}_{j}$ is minimal.
(computationally expensive; used for large problems; usually leads to very few iterations)


## Pivot Selection

## Question

How to choose $j$ with $\bar{c}_{j}<0$ and $\ell$ with $\frac{x_{B(\ell)}}{u_{\ell}}=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}$ if several possible choices exists in an iteration of the simplex algorithm?

The choice of $j$ is critical for the overall behavior of the simplex method. Three popular choices are:

- smallest subscript rule: choose smallest $j$ with $\bar{c}_{j}<0$. (very simple; no need to compute entire vector $\bar{c}$; usually leads to many iterations)
- steepest descent rule: choose $j$ such that $\bar{c}_{j}<0$ is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose $j$ such that $\theta^{*} \bar{c}_{j}$ is minimal. (computationally expensive; used for large problems; usually leads to very few iterations)


### 3.3 Implementations of the simplex method

- The revised simplex method
- The full tableau implementation
- Comparison
- Practical performance ehancements


## The revised simplex method

## Observation

In order to execute one iteration of the simplex method efficiently, it suffices to know $B(1), \ldots, B(m)$, the inverse $B^{-1}$ of the basis matrix and the input data $A, b$, and $c$. It is then easy to compute:

$$
\begin{aligned}
x_{B} & =B^{-1} b & \bar{c}^{T} & =c^{T}-c_{B}{ }^{T} B^{-1} A \\
u & =B^{-1} A_{j} & \theta^{*} & =\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}
\end{aligned}
$$

The new basis matrix is then

$$
\bar{B}=\left(A_{B(1)} \ldots A_{B(\ell-1)} A_{j} A_{B(\ell+1)} \ldots A_{B(m)}\right)
$$

## Question

How to obtain $\bar{B}^{-1}$ efficiently?

## How to obtain $\bar{B}^{-1}$ efficiently?

- Notice that $B^{-1} \bar{B}=\left(e_{1} \ldots e_{\ell-1} u e_{\ell+1} \ldots e_{m}\right)$.
- By elementary linear algebra, $\bar{B}^{-1}$ can be obtained from $B^{-1}$ as follows:
Multiply the lth row of $B^{-1}$ with $1 / u_{i} ;$ then subtract $u_{i}$ times the resulting $\ell$ th row from the $i$ th row, for $i \neq \ell$.
- These are exactly the elementary row operations needed to turn $B^{-1} \bar{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.
- Equivalently:


Apply elementary row operations to the matrix $\left(B^{-1} \mid u\right)$ to make the last column equal to the unit vector $e_{\ell}$. The first $m$ columns of the resulting matrix form the inverse $\bar{B}^{-1}$ of the new basis matrix $\bar{B}$.

How to obtain $\bar{B}^{-1}$ efficiently?

- Notice that $B^{-1} \bar{B}=\left(e_{1} \ldots e_{\ell-1} u e_{\ell+1} \ldots e_{m}\right)$.
- By elementary linear algebra, $\bar{B}^{-1}$ can be obtained from $B^{-1}$ as follows:
Multiply the $\ell$ th row of $B^{-1}$ with $1 / u_{\ell}$; then subtract $u_{i}$ times the resulting $\ell$ th row from the $i$ th row, for $i \neq \ell$.
- These are exactly the elementary row operations needed to turn $B^{-1} \bar{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.
- Equivalently:



## How to obtain $\bar{B}^{-1}$ efficiently?

- Notice that $B^{-1} \bar{B}=\left(e_{1} \ldots e_{\ell-1} u e_{\ell+1} \ldots e_{m}\right)$.
- By elementary linear algebra, $\bar{B}^{-1}$ can be obtained from $B^{-1}$ as follows:
Multiply the $\ell$ th row of $B^{-1}$ with $1 / u_{\ell}$; then subtract $u_{i}$ times the resulting $\ell$ th row from the $i$ th row, for $i \neq \ell$.
- These are exactly the elementary row operations needed to turn $B^{-1} \bar{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.


## How to obtain $\bar{B}^{-1}$ efficiently?

- Notice that $B^{-1} \bar{B}=\left(e_{1} \ldots e_{\ell-1} u e_{\ell+1} \ldots e_{m}\right)$.
- By elementary linear algebra, $\bar{B}^{-1}$ can be obtained from $B^{-1}$ as follows:
Multiply the $\ell$ th row of $B^{-1}$ with $1 / u_{\ell}$; then subtract $u_{i}$ times the resulting $\ell$ th row from the $i$ th row, for $i \neq \ell$.
- These are exactly the elementary row operations needed to turn $B^{-1} \bar{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.
- Equivalently:

Obtaining $\bar{B}^{-1}$ from $B^{-1}$

## How to obtain $\bar{B}^{-1}$ efficiently?

- Notice that $B^{-1} \bar{B}=\left(e_{1} \ldots e_{\ell-1} u e_{\ell+1} \ldots e_{m}\right)$.
- By elementary linear algebra, $\bar{B}^{-1}$ can be obtained from $B^{-1}$ as follows:
Multiply the $\ell$ th row of $B^{-1}$ with $1 / u_{\ell}$; then subtract $u_{i}$ times the resulting $\ell$ th row from the $i$ th row, for $i \neq \ell$.
- These are exactly the elementary row operations needed to turn $B^{-1} \bar{B}$ into the identity matrix!
- Elementary row operations are the same as multiplying the matrix with corresponding elementary matrices from the left hand side.
- Equivalently:


## Obtaining $\bar{B}^{-1}$ from $B^{-1}$

Apply elementary row operations to the matrix $\left(B^{-1} \mid u\right)$ to make the last column equal to the unit vector $e_{\ell}$. The first $m$ columns of the resulting matrix form the inverse $\bar{B}^{-1}$ of the new basis matrix $\bar{B}$.


[^0]:    Remark
    M'e say that the nonbasic variable $x_{j}$ enters the basis and the basic variable leaves the basis.

