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An iteration of the simplex method
Let B = (AB(1) . . .AB(m)) be a basis matrix with a corresponding basic
feasible solution x .

1 Let cT := cT − cB
TB−1A. If c ≥ 0, then STOP;

else choose j with c j < 0.

2 Let u := B−1Aj . If u ≤ 0, then STOP (optimal cost is −∞).

3 Let θ∗ := min
i :ui>0

xB(i)

ui
=

xB(!)

u!
for some " ∈ {1, . . . ,m}.

4 Form new basis by replacing AB(!) with Aj ; corresponding basic
feasible solution y is given by

yj := θ∗ and yB(i) = xB(i) − θ∗ui for i &= ".

Remark
We say that the nonbasic variable xj enters the basis and the basic variable
xB(!) leaves the basis.
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Correctness of the simplex method

Theorem
Assume that the feasible set is nonempty and that every basic feasible
solution is nondegenerate. Then, the simplex method terminates after a
finite number of iterations. At termination, there are the following two
possibilities:

1 We have an optimal basis matrix B and an associated basic feasible
solution x which is optimal.

2 We have found a vector d satisfying Ad = 0, d ≥ 0, and cTd < 0,
and the optimal cost is −∞.

Prof sketch.
The simplex method makes progress in every iteration. Since there are
only finitely many different basic feasible solutions, it stops after a finite
number of iteration.
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The simplex method for degenerate problems

An iteration of the simplex method can also be applied if x is a
degenerate basic feasible solution.

In this case it might happen that θ∗ := min
i :ui>0

xB(i)

ui
=

xB(!)

u!
= 0 if

some basic variable xB(!) is zero and dB(!) < 0.

Thus, y = x + θ∗d = x and the current basic feasible solution does
not change.

But replacing AB(!) with Aj still yields a new basis with associated
basic feasible solution y = x .

Remark
Even if θ∗ is positive, more than one of the original basic variables may
become zero at the new point x + θ∗d . Since only one of them leaves the
basis, the new basic feasible solution y is degenerate.
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Pivot Selection

Question

How to choose j with c j < 0 and " with
xB(!)

u!
= min

i :ui>0

xB(i)

ui
if several

possible choices exists in an iteration of the simplex algorithm?

The choice of j is critical for the overall behavior of the simplex method.
Three popular choices are:

smallest subscript rule: choose smallest j with c j < 0.
(very simple; no need to compute entire vector c ; usually leads to
many iterations)

steepest descent rule: choose j such that c j < 0 is minimal.
(relatively simple; commonly used for mid-size problems; does not
necessarily yield the best neighboring solution)

best improvement rule: choose j such that θ∗c j is minimal.
(computationally expensive; used for large problems; usually leads to
very few iterations)

Martin Skutella (TU Berlin) Linear and Integer Programming (ADM II) WS 2007/08 6 / 40

3.3 Implementations of the simplex method

The revised simplex method

The full tableau implementation

Comparison

Practical performance ehancements
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The revised simplex method

Observation
In order to execute one iteration of the simplex method efficiently, it
suffices to know B(1), . . . ,B(m), the inverse B−1 of the basis matrix and
the input data A, b, and c . It is then easy to compute:

xB = B−1b cT = cT − cB
TB−1A

u = B−1Aj θ∗ = min
i :ui>0

xB(i)

ui
=

xB(!)

u!

The new basis matrix is then

B =
(
AB(1) . . .AB(!−1)AjAB(!+1) . . .AB(m)

)

Question

How to obtain B
−1

efficiently?
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How to obtain B
−1

efficiently?

Notice that B−1B = (e1 . . . e!−1 u e!+1 . . . em).

By elementary linear algebra, B
−1

can be obtained from B−1 as
follows:
Multiply the "th row of B−1 with 1/u!; then subtract ui times the
resulting "th row from the ith row, for i &= ".

These are exactly the elementary row operations needed to turn
B−1B into the identity matrix!

Elementary row operations are the same as multiplying the matrix
with corresponding elementary matrices from the left hand side.

Equivalently:

Obtaining B
−1

from B−1

Apply elementary row operations to the matrix (B−1|u) to make the last
column equal to the unit vector e!. The first m columns of the resulting

matrix form the inverse B
−1

of the new basis matrix B.
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An iteration of the “revised simplex method”

Given: AB(1), . . . ,AB(m), an associated basic feasible solution x , and B−1.

1 Let pT := cB
TB−1 and compute the reduced costs c j := cj − pTAj ;

if c ≥ 0, then STOP; else choose j with c j < 0.

2 Let u := B−1Aj . If u ≤ 0, then STOP (optimal cost is −∞).

3 Let θ∗ := min
i :ui>0

xB(i)

ui
=

xB(!)

u!
for some " ∈ {1, . . . ,m}.

4 Form new basis by replacing AB(!) with Aj ; corresponding basic
feasible solution y is given by

yj := θ∗ and yB(i) = xB(i) − θ∗ui for i &= ".

5 Apply elementary row operations to the matrix (B−1|u) to make the
last column equal to the unit vector e!. The first m columns of the

resulting matrix yield B
−1

.
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The full tableau implementation

Main idea

Instead of maintaining and updating the matrix B−1, we maintain and
update the m × (n + 1)-matrix

B−1(b|A) = (B−1b|B−1A)

which is called the simplex tableau.

The zeroth column B−1b contains xB .

For i = 1, . . . , n, the ith column of the tableau is B−1Ai .

The column u = B−1Aj corresponding to the variable xj that is about
to enter the basis is the pivot column.

If the "th basic variable xB(!) exits the basis, the "th row of the
tableau is the pivot row.

The element u! > 0 is the pivot element.
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The full tableau implementation (cont.)

Notice that the simplex tableau B−1(b|A) represents the equality system
B−1b = B−1Ax which is equivalent to Ax = b.

Updating the simplex tableau

At the end of an iteration, the simplex tableau B−1(b|A) has to be

updated to B
−1

(b|A).

B
−1

can be obtained from B−1 by elementary row operations (i.e.

B
−1

= QB
−1

where Q is a product of elementary matrices).

Thus, B
−1

(b|A) = QB−1(b|A) and the new tableau B
−1

(b|A) can be
obtained from the old one by applying the same elementary row
operations.
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The zeroth row of the simplex tableau
In order to keep track of the objective function value and the reduced
costs, we consider the following augmented simplex tableau:

−cB
TB−1b cT − cB

TB−1A

B−1b B−1A

or in more detail

−cB
T xB c1 · · · cn

xB(1) | |
... B−1A1 · · · B−1An

xB(m) | |

Update after one iteration

The zeroth row is updated by adding a multiple of the pivot row to the
zeroth row to set the reduced cost of the entering variable to zero.
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An iteration of the full tableau implementation

Given: Simplex tableau associated with a feasible basis AB(1), . . . ,AB(m).

1 If c ≥ 0 (zeroth row), then STOP; else choose pivot column j with
c j < 0.

2 If u = B−1Aj ≤ 0 (jth column), then STOP (optimal cost is −∞).

3 Let θ∗ := min
i :ui>0

xB(i)

ui
=

xB(!)

u!
for some " ∈ {1, . . . ,m} (see columns 0

and j).

4 Form new basis by replacing AB(!) with Aj .

5 Apply elementary row operations to the simplex tableau so that u!

(pivot element) becomes one and all other entries of the pivot column
become zero.

Martin Skutella (TU Berlin) Linear and Integer Programming (ADM II) WS 2007/08 14 / 40

The full tableau implementation: An example

A simple linear programming problem

min −10x1 − 12x2 − 12x3

s.t. x1 + 2x2 + 2x3 ≤ 20
2x1 + x2 + 2x3 ≤ 20
2x1 + 2x2 + x3 ≤ 20

x1, x2, x3 ≥ 0

Martin Skutella (TU Berlin) Linear and Integer Programming (ADM II) WS 2007/08 15 / 40

The feasible set visualized in R3

D = (10, 0, 0)

x3

x2
x1

E = (4, 4, 4)

B = (0, 0, 10)

C = (0, 10, 0)

A = (0, 0, 0)
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Introducing slack variables
min −10x1 − 12x2 − 12x3

s.t. x1 + 2x2 + 2x3 ≤ 20
2x1 + x2 + 2x3 ≤ 20
2x1 + 2x2 + x3 ≤ 20

x1, x2, x3 ≥ 0

LP in standard form
min −10x1 − 12x2 − 12x3

s.t. x1 + 2x2 + 2x3 + x4 = 20
2x1 + x2 + 2x3 + x5 = 20
2x1 + 2x2 + x3 + x6 = 20

x1, . . . , x6 ≥ 0

Observation
The right hand side of the system is non-negative. Therefore the point
(0, 0, 0, 20, 20, 20) is a basic feasible solution and we can start the simplex
method with basis B(1) = 4,B(2) = 5,B(3) = 6.
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Setting up the simplex tableau

x1 x2 x3 x4 x5 x6
xB(i)

ui

0 − 10 − 12 − 12 0 0 0
x4 = 20 1 2 2 1 0 0 20
x5 = 20 2 1 2 0 1 0 10
x6 = 20 2 2 1 0 0 1 10

Determine pivot column (e.g. take smallest subscript rule).

c̄1 < 0 ⇒ x1 enters the basis.

Find pivot row with ui > 0 and
xB(i)

ui
minimum.

Rows 2 and 3 both attain minimum.

Choose i = 2 with B(i) = 5. ⇒ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0), cost value -100.
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Geometric interpretation in the original polyhedron

Basis: (4, 5, 6)
x3

x2
x1

E = (4, 4, 4)

B = (0, 0, 10)

C = (0, 10, 0)

A = (0, 0, 0)

D = (10, 0, 0)
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Geometric interpretation in the original polyhedron

Basis: (4, 1, 6)
x3

x2
x1

E = (4, 4, 4)

B = (0, 0, 10)

C = (0, 10, 0)

A = (0, 0, 0)

D = (10, 0, 0)
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The next iterations

x1 x2 x3 x4 x5 x6
xB(i)

ui

100 0 − 7 − 2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0 10
x1 = 10 1 0.5 1 0 0.5 0 10
x6 = 0 0 1 − 1 0 − 1 1 −

c̄2, c̄3 < 0 ⇒ Two possible choices for pivot column.

Choose x3 for entering the new basis.

u3 < 0 ⇒ Third row will not be a choice for pivot row.

Choose x4 to leave basis.

New basic feasible solution: (0, 0, 10, 0, 0, 10), correspondig to point
B in the original polyhedron.
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The feasible set visualized in R3

Basis: (3, 1, 6)
x3

x2
x1

E = (4, 4, 4)

B = (0, 0, 10)

C = (0, 10, 0)

A = (0, 0, 0)

D = (10, 0, 0)
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The next iterations

x1 x2 x3 x4 x5 x6
xB(i)

ui

120 0 −4 0 2 4 0
x3 = 10 0 1.5 1 1 −0.5 0 20

3
x1 = 0 1 −1 0 −1 1 0 −
x6 = 10 0 2.5 0 1 −1.5 1 4 < 20

3

x2 enters the basis, x6 leaves it. We get

x1 x2 x3 x4 x5 x6

136 0 0 0 3.6 1.6 1.6
x3 = 4 0 0 1 0.4 0.4 −0.6
x1 = 4 1 0 0 −0.6 0.4 0.4
x2 = 4 0 1 0 0.4 −0.6 0.4

and the reduced costs are non-negative.
Thus (4, 4, 4, 0, 0, 0) is an optimal solution with cost value -136,
corresponding to point E = (4, 4, 4) in the original polyhedron.
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The iterations from geometric point of view

Basis: (3, 1, 2)
x3

x2
x1

E = (4, 4, 4)

B = (0, 0, 10)

C = (0, 10, 0)

A = (0, 0, 0)

D = (10, 0, 0)

Martin Skutella (TU Berlin) Linear and Integer Programming (ADM II) WS 2007/08 24 / 40



Cycling
If a linear programming problem is degenerate, the simplex method might
end up in an infinite loop (cycling).

An example

x1 x2 x3 x4 x5 x6 x7

3 −3/4 20 −1/2 6 0 0 0
x5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 1 0 0 1 0 0 0 1

Pivoting rules
1 Column selection: We select a nonbasic variable with the most

negative reduced cost c̄j to be the one that enters the basis, i.e.
steepest descent rule.

2 Row selection: Out of all basic variables that are eligible to exit the
basis, we select the one with the smallest subscript.
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Iteration 1

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui

3 − 3/4 20 − 1/2 6 0 0 0
x5 = 0 1/4 − 8 − 1 9 1 0 0 0
x6 = 0 1/2 − 12 − 1/2 3 0 1 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x1 enters the basis x5 leaves.

Bases visited

(5, 6, 7)
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Iteration 2

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui

3 0 − 4 −7/2 33 3 0 0
x1 = 0 1 −32 −4 36 4 0 0 −
x6 = 0 0 4 3/2 −15 −2 1 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x2 enters the basis x6 leaves.

Bases visited

(5, 6, 7) → (1, 6, 7)
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Iteration 3

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui

3 0 0 − 4/2 18 1 1 0
x1 = 0 1 0 8 156 −12 4 0 0
x2 = 0 0 1 3/8 −15/4 −1/2 1/4 0 0
x7 = 1 0 0 1 0 0 0 1 1

Basis change: x3 enters the basis x1 leaves.

Bases visited

(5, 6, 7) → (1, 6, 7) → (1, 2, 7)
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Iteration 4

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui

3 1/4 0 0 − 3 −2 3 0
x3 = 0 1/8 0 1 −21/2 −3/2 1 0 −
x2 = 0 −3/64 1 0 3/16 1/16 −1/8 0 0
x7 = 1 −1/8 0 0 21/2 3/2 −1 1 2/21

Basis change: x4 enters the basis x2 leaves.

Bases visited

(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7)
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Iteration 5

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui

3 −1/2 16 0 0 − 1 1 0
x3 = 0 −5/2 56 1 0 2 −6 0 0
x4 = 0 −1/4 16/3 0 1 1/3 −2/3 0 0
x7 = 1 5/2 −56 0 0 −2 6 1 −

Basis change: x5 enters the basis x3 leaves.

Bases visited

(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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Iteration 6

x1 x2 x3 x4 x5 x6 x7
xB(i)

ui

3 −7/4 44 1/2 0 0 − 2 0
x1 = 0 −5/4 28 1/2 0 1 −3 0 −
x2 = 0 1/6 −4 −1/6 1 0 1/3 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x6 enters the basis x4 leaves.

Bases visited

(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)
→ (5, 4, 7)
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Back at the beginning

x1 x2 x3 x4 x5 x6 x7

3 −3/4 20 −1/2 6 0 0 0
x5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 1 0 0 1 0 0 0 1

Bases visited

(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)
→ (5, 4, 7) → (5, 6, 7)

This is the same basis that we started with.

Conclusion
Continuing with the pivoting rules we agreed on at the beginning, the
simplex method will never terminate in this example.
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Comparison of full tableau and revised simplex methods

The following table gives the computational cost of one iteration of the
simplex method for the two variants introduced above.

full tableau revised simplex
memory O(mn) O(m2)
worst-case time O(mn) O(mn)
best-case time O(mn) O(m2)

Conclusion
For implementation purposes, the revised simplex method is clearly
preferable due to its smaller memory requirement and smaller average
running time.

The full tableau method is convenient for solving small LP instances
by hand since all necessary information is readily available.
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Practical performance enhancements

Numerical stability

The most critical issue when implementing the (revised) simplex method is
numerical stability. In order to deal with this, a number of additional ideas
from numerical linear algebra are needed.

Every update of B−1 introduces roundoff or truncation errors which
accumulate and might eventually lead to highly inaccurate results.
Solution: Compute the matrix B−1 from scratch once in a while.

Instead of computing B−1 explicitly, it can be stored as a product of
matrices Qk · Qk−1 · . . . · Q1 where each matrix Qi can be specified in

terms of m coefficients. Then B
−1

= Qk+1 · B−1 = Qk+1 · . . . · Q1.
This might also save space.

Instead of computing B−1 explicitly, compute and store an
LR-decomposition.
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