
3.4 Anticycling

In this section we discuss two pivoting rules that are guaranteed to avoid
cycling. These are

the lexicographic rule

and Bland’s rule.
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Lexicographic order

Definition

A vector u ∈ Rn is lexicographically positive (negative) if u "= 0 and
the first nonzero entry of u is positive (negative). Symbolically, we

write u
L
> 0 (resp. u

L
< 0).

A vector u ∈ Rn is lexicographically larger (smaller) than a vector

v ∈ Rn if u "= v and u − v
L
> 0 (resp. u − v

L
< 0). We write u

L
> v

(resp. u
L
< v).

Example

(0, 2, 3, 0)T
L
> (0, 2, 1, 4)T

(0, 4, 5, 0)T
L
< (1, 2, 1, 2)T
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The lexicographic pivoting rule

We describe the lexicographic pivoting rule in the full tableau
implementation.

Lexicographic pivoting rule
1 Choose an arbitrary column Aj with c j < 0 to enter the basis. Let

u := B−1Aj be the jth column of the tableau.

2 For each i with ui > 0, divide the ith row of the tableau by ui and
choose the lexicographically smallest row !. Then the !th basic
variable xB(!) exits the basis.

Remark
The lexicographic pivoting rule always leads to a unique choice for the
exiting variable. Otherwise two rows of B−1A would have to be linearly
dependent which contradicts our assumption on the matrix A.
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The lexicographic pivoting rule (cont.)

Theorem
Suppose that the simplex algorithm starts with lexicographically positive
rows 1, . . . ,m in the simplex tableau. Suppose that the lexicographic
pivoting rule is followed. Then:

1 Rows 1, . . . ,m of the simplex tableau remain lexicographically positive
throughout the algorithm.

2 The zeroth row strictly increases lexicographically at each iteration.

3 The simplex algorithm terminates after a finite number of iterations.

Proof.
See eChalk...
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Remarks on the lexicographic pivoting rule

The lexicographic pivoting rule was derived by considering s small
perturbation of the right hand side vector b leading to a
nondegenerate problem (see exercises).

The lexicographic pivoting rule can also be used in conjunction with
the revised simplex method, provided that B−1 is computed explicitly
(this is not the case in sophisticated implementations).

The assumption in the theorem on the lexicographically positive rows
in the tableau can be made without loss of generality: Rearrange the
columns of A such that the basic columns (forming the identity matrix
in the tableau) come first. Since the zeroth column is nonnegative for
a basic feasible solution, all rows are lexicographically positive.
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Bland’s rule

Smallest subscript pivoting rule (Bland’s rule)
1 Choose the column Aj with c j < 0 and j minimal to enter the basis.

2 Among all basic variables xi that could exit the basis, select the one
with smallest i .

Theorem (without proof)

The simplex algorithm with Bland’s rule terminates after a finite number
of iterations.

Remark
Bland’s rule is compatible with an implementation of the revised simplex
method in which the reduced costs of the nonbasic variables are computed
one at a time, in the natural order, until a negative one is discovered.
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3.5 Finding an initial basic feasible solution

So far we always assumed that the simplex algorithm starts with a basic
feasible solution. In this section we discuss how such a solution can be
obtained.

Introducing artificial variables

The two-phase simplex method

The big-M method
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Introducing artificial variables
Example LP

min x1 + x2 + x3

s.t. x1 + 2x2 + 3x3 = 3
−x1 + 2x2 + 6x3 = 2

4x2 + 9x3 = 5
3x3 + x4 = 1

x1, . . . , x4 ≥ 0

Auxiliary problem with artificial variables

min x5 + x6 + x7 + x8

s.t. x1 +2x2 +3x3 x5 = 3
−x1 +2x2 +6x3 + x6 = 2

4x2 +9x3 + x7 = 5
3x3 +x4 + x8 = 1

x1, . . . , x4, x5, . . . , x8 ≥ 0
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The auxiliary problem

Auxiliary problem with artificial variables

min x5 + x6 + x7 + x8

s.t. x1 +2x2 +3x3 x5 = 3
−x1 +2x2 +6x3 + x6 = 2

4x2 +9x3 + x7 = 5
3x3 +x4 + x8 = 1

x1, . . . , x8 ≥ 0

Observation

x = (0, 0, 0, 0, 3, 2, 5, 1) is a basic feasible solution for this problem with
basic variables (x5, x6, x7, x8). We can form the initial tableau.
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Forming the initial tableau

x1 x2 x3 x4 x5 x6 x7 x8

0 0 0 0 0 1 1 1 1
x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 − 1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the
basis-variables.
Now we can proceed as seen before...
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Forming the initial tableau

x1 x2 x3 x4 x5 x6 x7 x8

− 10 0 − 8 − 18 0 0 0 0 1
x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 − 1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the
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Forming the initial tableau

x1 x2 x3 x4 x5 x6 x7 x8

−11 0 −8 −21 −1 0 0 0 0
x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 − 1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the
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Minimizing the auxiliary problem

x1 x2 x3 x4 x5 x6 x7 x8

−11 0 −8 −21 −1 0 0 0 0
x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Basis change: x4 enters the basis, x8 exits.
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Minimizing the auxiliary problem

x1 x2 x3 x4 x5 x6 x7 x8

−10 0 −8 −18 0 0 0 0 1
x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x4 = 1 0 0 3 1 0 0 0 1
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Minimizing the auxiliary problem

x1 x2 x3 x4 x5 x6 x7 x8

−4 0 −8 0 6 0 0 0 7
x5 = 2 1 2 0 −1 1 0 0 −1
x6 = 0 −1 2 0 −2 0 1 0 −2
x7 = 2 0 4 0 −3 0 0 1 −3
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x2 enters the basis, x6 exits.
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Minimizing the auxiliary problem

x1 x2 x3 x4 x5 x6 x7 x8

−4 −4 0 0 −2 0 4 0 −1
x5 = 2 2 0 0 1 1 −1 0 1
x2 = 0 −1/2 1 0 −1 0 1/2 0 −1
x7 = 2 0 0 1 0 −2 1 1 1
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x1 enters the basis, x5 exits.
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Minimizing the auxiliary problem

x1 x2 x3 x4 x5 x6 x7 x8

0 0 0 0 0 2 2 0 1
x1 = 1 1 0 0 1/2 1/2 −1/2 0 1/2
x2 = 1/2 0 1 0 −3/4 1/4 1/4 0 −3/4
x7 = 0 0 0 0 0 −1 −1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0
⇒ Also feasible for the original problem - but not (yet) basic.
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Minimizing the auxiliary problem
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Getting a basis for the original problem

x1 x2 x3 x4 x5 x6 x7 x8

0 0 0 0 0 2 2 0 1
x1 = 1 1 0 0 1/2 1/2 −1/2 0 1/2
x2 = 1/2 0 1 0 −3/4 1/4 1/4 0 −3/4
x7 = 0 0 0 0 0 −1 −1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Observation
Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.
→ We can remove the third row.
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Getting a basis for the original problem

x1 x2 x3 x4

∗ ∗ ∗ ∗ ∗
x1 = 1 1 0 0 1/2
x2 = 1/2 0 1 0 −3/4
x3 = 1/3 0 0 1 1/3

We finally obtain a basic feasible solution for the original problem.
After computing the reduced costs for this basis (as seen in the
beginning), the simplex method can start with its typical iterations.
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Getting a basis for the original problem

x1 x2 x3 x4

− 11/6 0 0 0 − 1/12
x1 = 1 1 0 0 1/2
x2 = 1/2 0 1 0 −3/4
x3 = 1/3 0 0 1 1/3

We finally obtain a basic feasible solution for the original problem.
After computing the reduced costs for this basis (as seen in the
beginning), the simplex method can start with its typical iterations.
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Omitting artificial variables

Auxiliary problem

min x5 +x6 +x7 +x8

s.t. x1 +2x2 +3x3 x5 = 3
−x1 +2x2 +6x3 +x6 = 2

4x2 +9x3 +x7 = 5
3x3 + x4 + x8 = 1

x1, . . . , x8 ≥ 0

Artificial variable x8 could have been omitted by setting x4 to 1 in the
initial basis. This is possible as x4 does only appear in one constraint.
Generally, this can be done e.g. with all slack variables that have
nonnegative right hand sides.
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Phase I of the simplex method

Given: LP in standard form: min cT x s.t. Ax = b, x ≥ 0

1 Transform problem such that b ≥ 0 (multiply constraints by −1).

2 Introduce artificial variables y1, . . . , ym and solve auxiliary problem

min
m∑

i=1

yi s.t. Ax + Imy = b, x , y ≥ 0 .

3 If optimal cost is positive, then STOP (original LP is infeasible).

4 If no artificial variable is in final basis, eliminate artificial variables and
columns and STOP (feasible basis for original LP has been found).

5 If !th basic variable is artificial, find j ∈ {1, . . . , n} with !th entry in
B−1Aj nonzero. Use this entry as pivot element and replace !th basic
variable with xj .

6 If no such j ∈ {1, . . . , n} exists, eliminate !th row (constraint).
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The two-phase simplex method

Two-phase simplex method
1 Given an LP in standard from, first run phase I.

2 If phase I yields a basic feasible solution for the original LP, enter
“phase II” (see above).

Possible outcomes of the two-phase simplex method
1 Problem is infeasible (detected in phase I).

2 Problem is feasible but rows of A are linearly dependent (detected and
corrected at the end of phase I by eliminating redundant constraints.)

3 Optimal cost is −∞ (detected in phase II).

4 Problem has optimal basic feasible solution (found in phase II).

Remark: (2) is not an outcome but only an intermediate result leading to
outcome (3) or (4).
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The big-M method

Alternative idea: Combine the two phases into one by introducing
sufficiently large penalty costs for artificial variables.

This way, the LP
min

∑n
i=1 cixi

s.t. Ax = b
x ≥ 0

becomes
min

∑n
i=1 cixi + M

∑m
j=1 yj

s.t. Ax + y = b
x , y ≥ 0

.

If M is sufficiently large and the original program has a feasible solution,
all artificial variables will be driven to zero by the simplex method.
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How to choose M?

Observation
Initially, M only occurs in the zeroth row. As the zeroth row never becomes
pivot row, this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced
cost coefficients.

Order on cost coefficients

aM + b < cM + d :⇔ (a < c) ∨ (a = c ∧ b < c)

In particular, −aM + b < 0 < aM + b for any positive a and arbitrary b,
and we can decide whether a cost coefficient is negative or not.
→ There is no need to give M a fixed numerical value.
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Example

Example LP

min x1 + x2 + x3

s.t. x1 + 2x2 + 3x3 = 3
−x1 + 2x2 + 6x3 = 2

4x2 + 9x3 = 5
3x3 + x4 = 1

x1, . . . , x4 ≥ 0
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Introducing artificial variables and M

Auxiliary problem

min x1 +x2 +x3 + Mx5 + Mx6 + Mx7

s.t. x1 +2x2 +3x3 x5 = 3
−x1 +2x2 +6x3 + x6 = 2

4x2 +9x3 + x7 = 5
3x3 +x4 = 1

x1, . . . , x7 ≥ 0

Note that this time the unnecessary artificial variable x8 has been omitted.

We start off with (x5, x6, x7, x4) = (3, 2, 5, 1).
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Forming the initial tableau

x1 x2 x3 x4 x5 x6 x7

0 1 1 1 0 M M M
3 1 2 3 0 1 0 0
2 − 1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic
variables.
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x1 x2 x3 x4 x5 x6 x7

− 5M 1 − 4M + 1 − 9M + 1 0 0 0 M
3 1 2 3 0 1 0 0
2 − 1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic
variables.
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Forming the initial tableau

x1 x2 x3 x4 x5 x6 x7

− 10M 1 − 8M + 1 − 18M + 1 0 0 0 0
3 1 2 3 0 1 0 0
2 − 1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic
variables.
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First iteration

x1 x2 x3 x4 x5 x6 x7

−10M 1 − 8M + 1 − 18M + 1 0 0 0 0
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Reduced costs for x2 and x3 are negative.
Basis change: x3 enters the basis, x4 leaves.
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Second iteration

x1 x2 x3 x4 x5 x6 x7

−4M − 1/3 1 −8M + 1 0 6M − 1/3 0 0 0
2 1 2 0 −1 1 0 0
0 −1 2 0 −2 0 1 0
2 0 4 0 −3 0 0 1

1/3 0 0 1 1/3 0 0 0

Basis change: x2 enters the basis, x6 leaves.
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Second iteration

x1 x2 x3 x4 x5 x6 x7

−4M − 1/3 1 −8M + 1 0 6M − 1/3 0 0 0
2 1 2 0 −1 1 0 0
0 −1 2 0 −2 0 1 0
2 0 4 0 −3 0 0 1

1/3 0 0 1 1/3 0 0 0

Basis change: x2 enters the basis, x6 leaves.
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Third iteration

x1 x2 x3 x4 x5 x6 x7

−4M − 1/3 −4M + 3/2 0 0 −2M + 2/3 0 4M − 1/2 0
2 2 0 0 1 1 −1 0
0 −1/2 1 0 −1 0 1/2 0
2 2 0 0 1 0 −2 1

1/3 0 0 1 1/3 0 0 0

Basis change: x1 enters the basis, x5 leaves.
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Third iteration

x1 x2 x3 x4 x5 x6 x7

−4M − 1/3 −4M + 3/2 0 0 −2M + 2/3 0 4M − 1/2 0
2 2 0 0 1 1 −1 0
0 −1/2 1 0 −1 0 1/2 0
2 2 0 0 1 0 −2 1

1/3 0 0 1 1/3 0 0 0

Basis change: x1 enters the basis, x5 leaves.
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Fourth iteration

x1 x2 x3 x4 x5 x6 x7

−11/6 0 0 0 −1/12 2M − 3/4 2M + 1/4 0
21 1 0 0 1/2 1/2 −1/2 0
1/2 0 1 0 −3/4 1/4 1/4 0
0 0 0 0 0 −1 −1 1

1/3 0 0 1 1/3 0 0 0

Note that all artificial variables have already been driven to 0.

Basis change: x4 enters the basis, x3 leaves.
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Fifth iteration

x1 x2 x3 x4 x5 x6 x7

−7/4 0 0 1/4 0 2M − 3/4 2M + 1/4 0
1/2 1 0 −3/2 0 1/2 −1/2 0
5/4 0 1 9/4 0 1/4 1/4 0
0 0 0 0 0 −1 −1 1
1 0 0 3 1 0 0 0

We now have an optimal solution of the auxiliary problem, as all costs are
nonnegative (M presumed large enough).

By elimiating the third row as in the previous example, we get a basic
feasible and also optimal solution to the original problem.
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