3.4 Anticycling

In this section we discuss two pivoting rules that are guaranteed to avoid cycling. These are

- the lexicographic rule
- and Bland's rule.

Lexicographic order

Definition

- A vector $u \in \mathbb{R}^{n}$ is lexicographically positive (negative) if $u \neq 0$ and the first nonzero entry of u is positive (negative). Symbolically, we write $u \stackrel{L}{>} 0($ resp. $u \stackrel{L}{<} 0)$.
- A vector $u \in \mathbb{R}^{n}$ is lexicographically larger (smaller) than a vector $v \in \mathbb{R}^{n}$ if $u \neq v$ and $u-v \stackrel{L}{>} 0($ resp. $u-v \stackrel{L}{<} 0)$. We write $u>^{L} v$ (resp. $u \stackrel{L}{<} v$).

Lexicographic order

Definition

- A vector $u \in \mathbb{R}^{n}$ is lexicographically positive (negative) if $u \neq 0$ and the first nonzero entry of u is positive (negative). Symbolically, we write $u \stackrel{L}{>} 0($ resp. $u \stackrel{L}{<} 0)$.
- A vector $u \in \mathbb{R}^{n}$ is lexicographically larger (smaller) than a vector $v \in \mathbb{R}^{n}$ if $u \neq v$ and $u-v \stackrel{L}{>} 0($ resp. $u-v \stackrel{L}{<} 0)$. We write $u>^{L} v$ (resp. $u \stackrel{L}{<} v$).

Example

$$
\begin{aligned}
& (0,2,3,0)^{T} \stackrel{L}{>}(0,2,1,4)^{T} \\
& (0,4,5,0)^{T} \stackrel{L}{<}(1,2,1,2)^{T}
\end{aligned}
$$

The lexicographic pivoting rule

We describe the lexicographic pivoting rule in the full tableau implementation.

Lexicographic pivoting rule

(1) Choose an arbitrary column A_{j} with $\bar{c}_{j}<0$ to enter the basis. Let $u:=B^{-1} A_{j}$ be the j th column of the tableau.
(2) For each i with $u_{i}>0$, divide the i th row of the tableau by u_{i} and choose the lexicographically smallest row ℓ. Then the ℓ th basic variable $x_{B(\ell)}$ exits the basis.

The lexicographic pivoting rule always leads to a unique choice for the exiting variable. Otherwise two rows of $B^{-1} A$ would have to be linearly dependent which contradicts our assumption on the matrix A

The lexicographic pivoting rule

We describe the lexicographic pivoting rule in the full tableau implementation.

Lexicographic pivoting rule

(1) Choose an arbitrary column A_{j} with $\bar{c}_{j}<0$ to enter the basis. Let $u:=B^{-1} A_{j}$ be the j th column of the tableau.
(2) For each i with $u_{i}>0$, divide the i th row of the tableau by u_{i} and choose the lexicographically smallest row ℓ. Then the ℓ th basic variable $x_{B(\ell)}$ exits the basis.

Remark

The lexicographic pivoting rule always leads to a unique choice for the exiting variable. Otherwise two rows of $B^{-1} A$ would have to be linearly dependent which contradicts our assumption on the matrix A.

The lexicographic pivoting rule (cont.)

Theorem

Suppose that the simplex algorithm starts with lexicographically positive rows $1, \ldots, m$ in the simplex tableau. Suppose that the lexicographic pivoting rule is followed. Then:
(1) Rows $1, \ldots, m$ of the simplex tableau remain lexicographically positive throughout the algorithm.
(2) The zeroth row strictly increases lexicographically at each iteration.
(3) The simplex algorithm terminates after a finite number of iterations.

The lexicographic pivoting rule (cont.)

Theorem

Suppose that the simplex algorithm starts with lexicographically positive rows $1, \ldots, m$ in the simplex tableau. Suppose that the lexicographic pivoting rule is followed. Then:
(1) Rows $1, \ldots, m$ of the simplex tableau remain lexicographically positive throughout the algorithm.
(2) The zeroth row strictly increases lexicographically at each iteration.
(3) The simplex algorithm terminates after a finite number of iterations.

Proof.

See eChalk...

Remarks on the lexicographic pivoting rule

- The lexicographic pivoting rule was derived by considering s small perturbation of the right hand side vector b leading to a nondegenerate problem (see exercises).
- The lexicographic pivoting rule can also be used in conjunction with the revised simplex method, provided that B^{-1} is computed explicitly (this is not the case in sophisticated implementations)
- The assumption in the theorem on the lexicographically positive rows in the tableau can be made without loss of generality: Rearrange the columns of A such that the basic columns (forming the identity matrix in the tableau) come first. Since the zeroth column is nonnegative for a basic feasible solution, all rows are lexicographically positive.

Remarks on the lexicographic pivoting rule

- The lexicographic pivoting rule was derived by considering s small perturbation of the right hand side vector b leading to a nondegenerate problem (see exercises).
- The lexicographic pivoting rule can also be used in conjunction with the revised simplex method, provided that B^{-1} is computed explicitly (this is not the case in sophisticated implementations).
- The assumption in the theorem on the lexicographically positive rows in the tableau can be made without loss of generality: Rearrange the columns of A such that the basic columns (forming the identity matrix in the tableau) come first. Since the zeroth column is nonnegative for a basic feasible solution, all rows are lexicographically positive

Remarks on the lexicographic pivoting rule

- The lexicographic pivoting rule was derived by considering s small perturbation of the right hand side vector b leading to a nondegenerate problem (see exercises).
- The lexicographic pivoting rule can also be used in conjunction with the revised simplex method, provided that B^{-1} is computed explicitly (this is not the case in sophisticated implementations).
- The assumption in the theorem on the lexicographically positive rows in the tableau can be made without loss of generality: Rearrange the columns of A such that the basic columns (forming the identity matrix in the tableau) come first. Since the zeroth column is nonnegative for a basic feasible solution, all rows are lexicographically positive.

Bland's rule

Smallest subscript pivoting rule (Bland's rule)

(1) Choose the column A_{j} with $\bar{c}_{j}<0$ and j minimal to enter the basis.
(2) Among all basic variables x_{i} that could exit the basis, select the one with smallest i.

The simplex algorithm with Bland's rule terminates after a finite number of iterations

Bland's rule is compatible with an implementation of the revised simplex method in which the reduced costs of the nonhasic variables are comnuted one at a time, in the natural order, until a negative one is discovered

Bland's rule

Smallest subscript pivoting rule (Bland's rule)

(1) Choose the column A_{j} with $\bar{c}_{j}<0$ and j minimal to enter the basis.
(2) Among all basic variables x_{i} that could exit the basis, select the one with smallest i.

Theorem (without proof)

The simplex algorithm with Bland's rule terminates after a finite number of iterations.

Bland's rule is compatible with an implementation of the revised simplex method in which the reduced costs of the nonbasic variables are computed one at a time, in the natural order, until a negative one is discovered

Bland's rule

Smallest subscript pivoting rule (Bland's rule)

(1) Choose the column A_{j} with $\bar{c}_{j}<0$ and j minimal to enter the basis.
(2) Among all basic variables x_{i} that could exit the basis, select the one with smallest i.

Theorem (without proof)

The simplex algorithm with Bland's rule terminates after a finite number of iterations.

Remark

Bland's rule is compatible with an implementation of the revised simplex method in which the reduced costs of the nonbasic variables are computed one at a time, in the natural order, until a negative one is discovered.

3.5 Finding an initial basic feasible solution

So far we always assumed that the simplex algorithm starts with a basic feasible solution. In this section we discuss how such a solution can be obtained.

- Introducing artificial variables
- The two-phase simplex method
- The big- M method

Introducing artificial variables

Example LP

$$
\begin{array}{rrrr}
\min & x_{1}+x_{2}+x_{3} & =3 \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} & =2 \\
& -x_{1}+2 x_{2}+6 x_{3} & =5 \\
& 4 x_{2}+9 x_{3} & 3 x_{3}+x_{4}=1 \\
& x_{1}, \ldots, x_{4} & \geq 0
\end{array}
$$

Introducing artificial variables

Example LP

$$
\begin{array}{rrr}
\min & x_{1}+x_{2}+x_{3} & =3 \\
\mathrm{s.t.} & x_{1}+2 x_{2}+3 x_{3} & =2 \\
-x_{1}+2 x_{2}+6 x_{3} & =5 \\
& 4 x_{2}+9 x_{3} & 3 x_{3}+x_{4}=1 \\
& x_{1}, \ldots, x_{4} \geq 0
\end{array}
$$

Auxiliary problem with artificial variables

The auxiliary problem

Auxiliary problem with artificial variables

min				x_{5}	$+x_{6}$	$+x_{7}$	$+x_{8}$		
s.t.	x_{1}	$+2 x_{2}$	$+3 x_{3}$	x_{5}				=	3
	$-x_{1}$	$+2 x_{2}$	$+6 x_{3}$		$+x_{6}$			=	2
		$4 x_{2}$	$+9 x_{3}$	$+x_{4}$	$+x_{7}$			$=$	5
			$3 x_{3}$				$+x_{8}$	$=$	1
							. , x_{8}	\geq	0

Observation
$x=(0,0,0,0,3,2,5,1)$ is a basic feasible solution for this problem with basic variables $\left(x_{5}, x_{6}, x_{7}, x_{8}\right)$. We can form the initial tableau.

The auxiliary problem

Auxiliary problem with artificial variables

Observation
$x=(0,0,0,0,3,2,5,1)$ is a basic feasible solution for this problem with basic variables ($x_{5}, x_{6}, x_{7}, x_{8}$). We can form the initial tableau.

Forming the initial tableau

$x_{5}=$| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{6}=$ | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| $x_{7}=$ | | | | | | | | |
| $x_{8}=$ | 3
 2 | 1 | 2 | 3 | 0 | 1 | 0 | 0 |
| 0 | | | | | | | | |
| 5 | 0 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |
| x_{8} | 3 | 1 | 0 | 0 | 0 | 1 | | |

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
Now we can proceed as seen before.

Forming the initial tableau

$x_{5}=$| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{6} | $=$0
 3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | | | | | | | | |
| x_{6} | $=$ | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| x_{7} | | | | | | | | |
| $x_{8}=$ | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

Forming the initial tableau

		x_{1}	x_{2}	x_{3}	χ_{4}	χ_{5}	x_{6}	x_{7}	χ_{8}
	-3	-1	-2	-3	0	0	1	1	1
$x_{5}=$	3	1	2	3	0	1	0	0	0
$x_{6}=$	2	-1	2	6	0	0	1	0	0
$x_{7}=$	5	0	4	9	0	0	0	1	0
$x_{8}=$	1	0	0	3	1	0	0	0	1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

Forming the initial tableau

		x_{1}	x_{2}	x_{3}	χ_{4}	χ_{5}	x_{6}	x_{7}	χ_{8}
	- 5	0	-4	-9	0	0	0	1	1
$x_{5}=$	3	1	2	3	0	1	0	0	0
$x_{6}=$	2	-1	2	6	0	0	1	0	0
$x_{7}=$	5	0	4	9	0	0	0	1	0
$x_{8}=$	1	0	0	3	1	0	0	0	1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

Forming the initial tableau

		x_{1}	x_{2}	x_{3}	χ_{4}	χ_{5}	x_{6}	x_{7}	x_{8}
	-10	0	-8	- 18	0	0	0	0	1
$x_{5}=$	3	1	2	3	0	1	0	0	0
$x_{6}=$	2	-1	2	6	0	0	1	0	0
$x_{7}=$	5	0	4	9	0	0	0	1	0
$x_{8}=$	1	0	0	3	1	0	0	0	1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.

Forming the initial tableau

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -11 | 0 | -8 | -21 | -1 | 0 | 0 | 0 | 0 |
| $x_{5}=$ | 11 | | | | | | | |
| $x_{6}=$ | | | | | | | | |
| $x_{7}=$ | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| $x_{8}=$ | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables.
Now we can proceed as seen before...

Minimizing the auxiliary problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
-11	0	-8	-21	-1	0	0	0	0	
$x_{5}=$	11								
$x_{6}=$									
$x_{7}=$	2	1	2	3	0	1	0	0	0
$x_{8}=$	-1	2	6	0	0	1	0	0	
5	0	4	9	0	0	0	1	0	
1	0	0	3	1	0	0	0	1	

Basis change: x_{4} enters the basis, x_{8} exits.

Minimizing the auxiliary problem

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -11 | 0 | -8 | -21 | -1 | 0 | 0 | 0 | 0 |
| $x_{5}=$ | | | | | | | | |
| $x_{6}=$ | 11 | | | | | | | |
| $x_{7}=$ | | | | | | | | |
| $x_{8}=$ | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 |
| 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 1 |

Basis change: x_{4} enters the basis, x_{8} exits.

Minimizing the auxiliary problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
-10	0	-8	-18	0	0	0	0	1	
$x_{5}=$	3	1	2	3	0	1	0	0	0
$x_{6}=$	2	-1	2	6	0	0	1	0	0
$x_{7}=$									
$x_{4}=$	0	4	9	0	0	0	1	0	
1	0	0	3	1	0	0	0	1	

Basis change: x_{3} enters the basis, x_{4} exits.

Minimizing the auxiliary problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
-10	0	-8	-18	0	0	0	0	1	
$x_{5}=$	3	1	2	3	0	1	0	0	0
$x_{6}=$									
$x_{7}=$									
$x_{4}=$	-1	2	6	0	0	1	0	0	
5	0	4	9	0	0	0	1	0	
1	0	0	3	1	0	0	0	1	

Basis change: x_{3} enters the basis, x_{4} exits.

Minimizing the auxiliary problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
-4	0	-8	0	6	0	0	0	7	
$x_{5}=$									
$x_{6}=$	2	1	2	0	-1	1	0	0	-1
$x_{7}=$									
$x_{3}=$	-1	2	0	-2	0	1	0	-2	
2	0	4	0	-3	0	0	1	-3	
$1 / 3$	0	0	1	$1 / 3$	0	0	0	$1 / 3$	

Basis change: x_{2} enters the basis, x_{6} exits.

Minimizing the auxiliary problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
-4	0	-8	0	6	0	0	0	7	
$x_{5}=$	2	1	2	0	-1	1	0	0	-1
$x_{6}=$									
$x_{7}=$	$x_{3}=$	2	-1	2	0	-2	0	1	0
-2									
$1 / 3$	0	4	0	-3	0	0	1	-3	
x_{3}	0	1	$1 / 3$	0	0	0	$1 / 3$		

Basis change: x_{2} enters the basis, x_{6} exits.

Minimizing the auxiliary problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
-4	-4	0	0	-2	0	4	0	-1	
$x_{5}=$	2	2	0	0	1	1	-1	0	1
$x_{2}=$									
$x_{7}=$									
$x_{3}=$	$-1 / 2$	1	0	-1	0	$1 / 2$	0	-1	
2	0	0	1	0	-2	1	1	1	
$1 / 3$	0	0	1	$1 / 3$	0	0	0	$1 / 3$	

Basis change: x_{1} enters the basis, x_{5} exits.

Minimizing the auxiliary problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
-4	-4	0	0	-2	0	4	0	-1
$x_{5}=$	2	2	0	0	1	1	-1	0
$x_{2}=$	0	$-1 / 2$	1	0	-1	0	$1 / 2$	0
$x_{7}=$	-1							
$x_{3}=$	0	0	1	0	-2	1	1	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0	$1 / 3$

Basis change: x_{1} enters the basis, x_{5} exits.

Minimizing the auxiliary problem

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	0	0	0	0	0	2	2	0	1
$x_{1}=$	1	1	0	0	1/2	1/2	$-1 / 2$	0	1/2
$x_{2}=$	1/2	0	1	0	$-3 / 4$	1/4	1/4	0	$-3 / 4$
$x_{7}=$	0	0	0	0	0	-1	-1	1	0
$x_{3}=$	1/3	0	0	1	1/3	0	0	0	1/3

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0 \Rightarrow Also feasible for the original problem - but not (yet) basic.

Minimizing the auxiliary problem

:---:
$x_{2}=$
$x_{2}=$
x_{7}
$x_{3}=$
$1 / 3$

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0

Minimizing the auxiliary problem

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	0	0	0	0	0	2	2	0	1
$x_{1}=$	1	1	0	0	1/2	1/2	$-1 / 2$	0	1/2
$x_{2}=$	1/2	0	1	0	$-3 / 4$	1/4	1/4	0	-3/4
$x_{7}=$	0	0	0	0	0	-1	-1	1	0
$x_{3}=$	1/3	0	0	1	$1 / 3$	0	0	0	$1 / 3$

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0 \Rightarrow Also feasible for the original problem - but not (yet) basic.

Getting a basis for the original problem

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
0	0	0	0	0	2	2	0	1	
$x_{1}=$									
$x_{2}=$									
$x_{7}=$									
$x_{3}=$	1	1	0	0	$1 / 2$	$1 / 2$	$-1 / 2$	0	$1 / 2$
$1 / 2$	0	1	0	$-3 / 4$	$1 / 4$	$1 / 4$	0	$-3 / 4$	
0	0	0	0	0	-1	-1	1	0	
$1 / 3$	0	0	1	$1 / 3$	0	0	0	$1 / 3$	

Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.
\rightarrow We can remove the third row.

Getting a basis for the original problem

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}	x_{7}	χ_{8}
	0	0	0	0	0	2	2	0	1
$x_{1}=$	1	1	0	0	1/2	1/2	$-1 / 2$	0	1/2
$x_{2}=$	1/2	0	1	0	$-3 / 4$	1/4	$1 / 4$	0	-3/4
$x_{7}=$	0	0	0	0	0	-1	-1	1	0
$x_{3}=$	$1 / 3$	0	0	1	1/3	0	0	0	1/3

Observation

Restricting the tableau to the original variables, we get a zero-row.
\square

Getting a basis for the original problem

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}	x_{7}	χ_{8}
	0	0	0	0	0	2	2	0	1
$x_{1}=$	1	1	0	0	1/2	1/2	$-1 / 2$	0	1/2
$x_{2}=$	1/2	0	1	0	$-3 / 4$	1/4	$1 / 4$	0	-3/4
$x_{7}=$	0	0	0	0	0	-1	-1	1	0
$x_{3}=$	$1 / 3$	0	0	1	1/3	0	0	0	1/3

Observation

Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.

Getting a basis for the original problem

		x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	0	0	0	0	0	2	2	0	1
$x_{1}=$	1	1	0	0	1/2	1/2	$-1 / 2$	0	1/2
$x_{2}=$	1/2	0	1	0	$-3 / 4$	1/4	1/4	0	-3/4
$x_{7}=$	0	0	0	0	0	-1	-1	1	0
$x_{3}=$	$1 / 3$	0	0	1	1/3	0	0	0	1/3

Observation

Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.
\rightarrow We can remove the third row.

Getting a basis for the original problem

	x_{1}	x_{2}	x_{3}	x_{4}
$*$	$*$	$*$	$*$	$*$
$x_{1}=$	$x_{2}=$			
$x_{3}=$	1	0	0	$1 / 2$
x_{3}	$1 / 2$	0	1	0
$1 / 3$	0	0	1	$1 / 3$

We finally obtain a basic feasible solution for the original problem. After computing the reduced costs for this basis (as seen in the beginning), the simplex method can start with its typical iterations.

Getting a basis for the original problem

	x_{1}	x_{2}	x_{3}	x_{4}
$*$	$*$	$*$	$*$	$*$
$x_{1}=$	1	1	0	0
$x_{2}=$	$1 / 2$			
$x_{3}=$	$1 / 2$	0	1	0
$1 / 3$	0	0	1	$1 / 3$

We finally obtain a basic feasible solution for the original problem.
beginning), the simplex method can start with its typical iterations.

Getting a basis for the original problem

		x_{1}	x_{2}	x_{3}	X4
	$-11 / 6$	0	0	0	$-1 / 12$
$x_{1}=$	1	1	0	0	1/2
$x_{2}=$	1/2	0	1	0	-3/4
$x_{3}=$	1/3	0	0	1	1/3

We finally obtain a basic feasible solution for the original problem. After computing the reduced costs for this basis (as seen in the beginning), the simplex method can start with its typical iterations.

Omitting artificial variables

Auxiliary problem

$$
\begin{aligned}
& \min \quad x_{5}+x_{6}+x_{7}+x_{8}
\end{aligned}
$$

Artificial variable x_{8} could have been omitted by setting x_{4} to 1 in the initial basis. This is possible as x_{4} does only appear in one constraint.
nonnegative right hand sides.

Omitting artificial variables

Auxiliary problem

$$
\begin{aligned}
& \min \quad x_{5}+x_{6}+x_{7}+x_{8}
\end{aligned}
$$

Artificial variable x_{8} could have been omitted by setting x_{4} to 1 in the initial basis. This is possible as x_{4} does only appear in one constraint. Generally, this can be done e.g. with all slack variables that have nonnegative right hand sides.

Phase I of the simplex method

Given: LP in standard form: $\min c^{T} x$ s.t. $A x=b, x \geq 0$
(C) Transform problem such that $b \geq 0$ (multiply constraints by -1)
(2) Introduce artificial variables y_{1}, \ldots, y_{m} and solve auxiliary problem

(3) If optimal cost is positive, then STOP (original LP is infeasible).

44 If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found).
(5) If ℓ th basic variable is artificial, find $j \in\{1, \ldots, n\}$ with ℓ th entry in $B^{-1} A_{j}$ nonzero. Use this entry as pivot element and replace ℓ th basic variable with x_{j}.
(6) If no such $j \in\{1, \ldots, n\}$ exists, eliminate ℓ th row (constraint).

Phase I of the simplex method

Given: LP in standard form: $\min c^{T} x$ s.t. $A x=b, x \geq 0$
(1) Transform problem such that $b \geq 0$ (multiply constraints by -1).
(2) Introduce artificial variables y_{1}, \ldots, y_{m} and solve auxiliary problem

(3) If optimal cost is positive, then STOP (original LP is infeasible)
a If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found)
(5) If ℓ th basic variable is artificial, find $j \in\{1, \ldots, n\}$ with ℓ th entry in $B^{-1} A$; nonzero. Use this entry as pivot element and replace ℓ th basic variable with x_{j}
(6) If no such $j \in\{1, \ldots, n\}$ exists, eliminate ℓ th row (constraint).

Phase I of the simplex method

Given: LP in standard form: $\min c^{\top} x$ s.t. $A x=b, x \geq 0$
(1) Transform problem such that $b \geq 0$ (multiply constraints by -1).
(2) Introduce artificial variables y_{1}, \ldots, y_{m} and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A x+I_{m} y=b, x, y \geq 0
$$

(3) If optimal cost is positive, then STOP (original LP is infeasible)
a If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found)
(5) If ℓ th basic variable is artificial, find $j \in\{1, \ldots, n\}$ with ℓ th entry in $B^{-1} A_{j}$ nonzero. Use this entry as pivot element and replace ℓ th basic variable with x_{j}
(6) If no such $j \in\{1, \ldots, n\}$ exists, eliminate ℓ th row (constraint)

Phase I of the simplex method

Given: LP in standard form: $\min c^{\top} x$ s.t. $A x=b, x \geq 0$
(1) Transform problem such that $b \geq 0$ (multiply constraints by -1).
(2) Introduce artificial variables y_{1}, \ldots, y_{m} and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A x+I_{m} y=b, x, y \geq 0
$$

(3) If optimal cost is positive, then STOP (original LP is infeasible).

Phase I of the simplex method

Given: LP in standard form: $\min c^{\top} x$ s.t. $A x=b, x \geq 0$
(1) Transform problem such that $b \geq 0$ (multiply constraints by -1).
(2) Introduce artificial variables y_{1}, \ldots, y_{m} and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A x+I_{m} y=b, x, y \geq 0
$$

(3) If optimal cost is positive, then STOP (original LP is infeasible).
(0) If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found).
© If no such $j \in\{1, \ldots, n\}$ exists, eliminate ℓ th row (constraint)

Phase I of the simplex method

Given: LP in standard form: $\min c^{\top} x$ s.t. $A x=b, x \geq 0$
(1) Transform problem such that $b \geq 0$ (multiply constraints by -1).
(2) Introduce artificial variables y_{1}, \ldots, y_{m} and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A x+I_{m} y=b, x, y \geq 0 .
$$

(3) If optimal cost is positive, then STOP (original LP is infeasible).
(0) If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found).
(0. If ℓ th basic variable is artificial, find $j \in\{1, \ldots, n\}$ with ℓ th entry in $B^{-1} A_{j}$ nonzero. Use this entry as pivot element and replace ℓ th basic variable with x_{j}.
(6) If no such $j \in\{1, \ldots, n\}$ exists, eliminate ℓ th row (constraint)

Phase I of the simplex method

Given: LP in standard form: $\min c^{\top} x$ s.t. $A x=b, x \geq 0$
(1) Transform problem such that $b \geq 0$ (multiply constraints by -1).
(2) Introduce artificial variables y_{1}, \ldots, y_{m} and solve auxiliary problem

$$
\min \sum_{i=1}^{m} y_{i} \quad \text { s.t. } A x+I_{m} y=b, x, y \geq 0
$$

(3) If optimal cost is positive, then STOP (original LP is infeasible).
(0) If no artificial variable is in final basis, eliminate artificial variables and columns and STOP (feasible basis for original LP has been found).
(0. If ℓ th basic variable is artificial, find $j \in\{1, \ldots, n\}$ with ℓ th entry in $B^{-1} A_{j}$ nonzero. Use this entry as pivot element and replace ℓ th basic variable with x_{j}.
(0) If no such $j \in\{1, \ldots, n\}$ exists, eliminate ℓ th row (constraint).

The two-phase simplex method
Two-phase simplex method
(1) Given an LP in standard from, first run phase I.
(2) If phase I yields a basic feasible solution for the original LP, enter "phase II" (see above).
(1) Problem is infeasible (detected in phase I)
(2) Problem is feasible but rows of A are linearly dependent (detected and corrected at the end of phase I by eliminating redundant constraints.)
(3) Optimal cost is $-\infty$ (detected in phase II)
© Problem has optimal basic feasible solution (found in phase II)

[^0]
The two-phase simplex method

Two-phase simplex method

(1) Given an LP in standard from, first run phase I.
(2) If phase I yields a basic feasible solution for the original LP, enter "phase II" (see above).

Possible outcomes of the two-phase simplex method

(1) Problem is infeasible (detected in phase I).
(2) Problem is feasible but rows of A are linearly dependent (detected and corrected at the end of phase I by eliminating redundant constraints.)
(3) Optimal cost is $-\infty$ (detected in phase II).
(Problem has optimal basic feasible solution (found in phase II).

Remark: (2) is not an outcome but only an intermediate result leading to outcome (3) or (4)

The two-phase simplex method

Two-phase simplex method

(1) Given an LP in standard from, first run phase I.
(2) If phase I yields a basic feasible solution for the original LP, enter "phase II" (see above).

Possible outcomes of the two-phase simplex method

(1) Problem is infeasible (detected in phase I).
(2) Problem is feasible but rows of A are linearly dependent (detected and corrected at the end of phase I by eliminating redundant constraints.)
(3) Optimal cost is $-\infty$ (detected in phase II).
(Problem has optimal basic feasible solution (found in phase II).
Remark: (2) is not an outcome but only an intermediate result leading to outcome (3) or (4).

The big- M method

Alternative idea: Combine the two phases into one by introducing sufficiently large penalty costs for artificial variables.
becomes

If M is sufficiently large and the original program has a feasible solution, all artificial variables will be driven to zero by the simplex method

The big- M method

Alternative idea: Combine the two phases into one by introducing sufficiently large penalty costs for artificial variables.

This way, the LP

$$
\begin{aligned}
\min & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

becomes

If M is sufficiently large and the original program has a feasible solution, all artificial variables will be driven to zero by the simplex method.

The big- M method

Alternative idea: Combine the two phases into one by introducing sufficiently large penalty costs for artificial variables.

This way, the LP

$$
\begin{array}{rrl}
\min & \sum_{i=1}^{n} c_{i} x_{i} & \\
\text { s.t. } & A x & =b \\
& x & \geq 0
\end{array}
$$

becomes

$$
\begin{array}{rrr}
\min & \sum_{i=1}^{n} c_{i} x_{i}+M \sum_{j=1}^{m} y_{j} \\
\mathrm{s.t.} & A x+ & y=b \\
& & x, y \geq 0
\end{array}
$$

If M is sufficiently large and the original program has a feasible solution, all artificial variables will be driven to zero by the simplex method.

The big- M method

Alternative idea: Combine the two phases into one by introducing sufficiently large penalty costs for artificial variables.

This way, the LP

$$
\begin{array}{rlrl}
\min & \sum_{i=1}^{n} c_{i} x_{i} & \\
\text { s.t. } & A x & =b \\
x & \geq 0
\end{array}
$$

becomes

$$
\begin{array}{rlrl}
\min & \sum_{i=1}^{n} c_{i} x_{i}+M \sum_{j=1}^{m} y_{j} & \\
\mathrm{s.t.} & A x+ & y & =b . \\
x, y & \geq 0
\end{array}
$$

If M is sufficiently large and the original program has a feasible solution, all artificial variables will be driven to zero by the simplex method.

How to choose M ?

Observation

Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot row, this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients
$a M+b<c M+d: \Leftrightarrow(a<c) \vee(a=c \wedge b<c)$
In particular,
and we can decide whether a cost coefficient is negative or not
\rightarrow There is no need to give M a fixed numerical value.

How to choose M ?

Observation

Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot row, this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients
\qquad
In particular,
and we can decide whether a cost coefficient is negative or not
\rightarrow There is no need to give M a fixed numerical value.

How to choose M ?

Observation

Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot row, this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients

$$
a M+b<c M+d: \Leftrightarrow(a<c) \vee(a=c \wedge b<c)
$$

and we can decide whether a cost coefficient is negative or not.
\rightarrow There is no need to give M a fixed numerical value.

How to choose M?

Observation

Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot row, this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients

$$
a M+b<c M+d: \Leftrightarrow(a<c) \vee(a=c \wedge b<c)
$$

In particular, $-a M+b<0<a M+b$ for any positive a and arbitrary b, and we can decide whether a cost coefficient is negative or not.

How to choose M?

Observation

Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot row, this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients

$$
a M+b<c M+d: \Leftrightarrow(a<c) \vee(a=c \wedge b<c)
$$

In particular, $-a M+b<0<a M+b$ for any positive a and arbitrary b, and we can decide whether a cost coefficient is negative or not.
\rightarrow There is no need to give M a fixed numerical value.

Example

Example LP

$$
\begin{array}{crcc}
\min & x_{1}+x_{2} & +x_{3} & =3 \\
\mathrm{s.t.} & x_{1}+2 x_{2}+3 x_{3} & =2 \\
-x_{1}+2 x_{2}+6 x_{3} & =5 \\
& 4 x_{2}+9 x_{3} & 3 x_{3}+x_{4}=1 \\
& x_{1}, \ldots, x_{4} & \geq 0
\end{array}
$$

Introducing artificial variables and M

Auxiliary problem

$$
\begin{array}{crrrrr}
\min & x_{1} & +x_{2} & +x_{3} & +M x_{5} & +M x_{6}+M x_{7} \\
\text { s.t. } & x_{1}+2 x_{2} & +3 x_{3} & x_{5} & & \\
-x_{1} & +2 x_{2} & +6 x_{3} & & +x_{6} & \\
& 4 x_{2} & +9 x_{3} & & & \\
& & 3 x_{3}+x_{4} & & & \\
& & & & & =1 \\
& & & x_{1}, \ldots, x_{7} & \geq 0
\end{array}
$$

Note that this time the unnecessary artificial variable x_{8} has been omitted.
We start off with $\left(x_{5}, x_{6}, x_{7}, x_{4}\right)=(3,2,5,1)$.

Forming the initial tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
0	1	1	1	0	M	M	M
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Compute reduced costs by eliminating the nonzero entries for the basic variables.

Forming the initial tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
0	1	1	1	0	M	M	M
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Compute reduced costs by eliminating the nonzero entries for the basic variables.

Forming the initial tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-3 M$	$-M+1$	$-2 M+1$	$-3 M+1$	0	0	M	M
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Compute reduced costs by eliminating the nonzero entries for the basic variables.

Forming the initial tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-5 M$	1	$-4 M+1$	$-9 M+1$	0	0	0	M
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Compute reduced costs by eliminating the nonzero entries for the basic variables.

Forming the initial tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-10 M$	1	$-8 M+1$	$-18 M+1$	0	0	0	0
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Compute reduced costs by eliminating the nonzero entries for the basic variables.

Forming the initial tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-10 M$	1	$-8 M+1$	$-18 M+1$	0	0	0	0
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Compute reduced costs by eliminating the nonzero entries for the basic variables.

First iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-10 M$	1	$-8 M+1$	$-18 M+1$	0	0	0	0
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Reduced costs for x_{2} and x_{3} are negative.
Basis change: x_{3} enters the basis, x_{4} leaves.

First iteration

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-10 M$ | 1 | $-8 M+1$ | $-18 M+1$ | 0 | 0 | 0 | 0 |
| 3 | 1 | 2 | 3 | 0 | 1 | 0 | 0 |
| 2 | -1 | 2 | 6 | 0 | 0 | 1 | 0 |
| 5 | 0 | 4 | 9 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 |

Reduced costs for x_{2} and x_{3} are negative.

First iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-10 M$	1	$-8 M+1$	$-18 M+1$	0	0	0	0
3	1	2	3	0	1	0	0
2	-1	2	6	0	0	1	0
5	0	4	9	0	0	0	1
1	0	0	3	1	0	0	0

Reduced costs for x_{2} and x_{3} are negative. Basis change: x_{3} enters the basis, x_{4} leaves.

Second iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-4 M-1 / 3$	1	$-8 M+1$	0	$6 M-1 / 3$	0	0	0
2	1	2	0	-1	1	0	0
0	-1	2	0	-2	0	1	0
2	0	4	0	-3	0	0	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0

Basis change: x_{2} enters the basis, x_{6} leaves.

Second iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-4 M-1 / 3$	1	$-8 M+1$	0	$6 M-1 / 3$	0	0	0
2	1	2	0	-1	1	0	0
0	-1	2	0	-2	0	1	0
2	0	4	0	-3	0	0	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0

Basis change: x_{2} enters the basis, x_{6} leaves.

Third iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-4 M-1 / 3$	$-4 M+3 / 2$	0	0	$-2 M+2 / 3$	0	$4 M-1 / 2$	0
2	2	0	0	1	1	-1	0
0	$-1 / 2$	1	0	-1	0	$1 / 2$	0
2	2	0	0	1	0	-2	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0

Basis change: x_{1} enters the basis, x_{5} leaves.

Third iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-4 M-1 / 3$	$-4 M+3 / 2$	0	0	$-2 M+2 / 3$	0	$4 M-1 / 2$	0
2	2	0	0	1	1	-1	0
0	$-1 / 2$	1	0	-1	0	$1 / 2$	0
2	2	0	0	1	0	-2	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0

Basis change: x_{1} enters the basis, x_{5} leaves.

Fourth iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-11 / 6$	0	0	0	$-1 / 12$	$2 M-3 / 4$	$2 M+1 / 4$	0
21	1	0	0	$1 / 2$	$1 / 2$	$-1 / 2$	0
$1 / 2$	0	1	0	$-3 / 4$	$1 / 4$	$1 / 4$	0
0	0	0	0	0	-1	-1	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0

Note that all artificial variables have already been driven to 0
Basis change: x_{4} enters the basis, x_{3} leaves.

Fourth iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-11 / 6$	0	0	0	$-1 / 12$	$2 M-3 / 4$	$2 M+1 / 4$	0
21	1	0	0	$1 / 2$	$1 / 2$	$-1 / 2$	0
$1 / 2$	0	1	0	$-3 / 4$	$1 / 4$	$1 / 4$	0
0	0	0	0	0	-1	-1	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0

Note that all artificial variables have already been driven to 0 .
Basis change: x_{4} enters the basis, x_{3} leaves.

Fourth iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-11 / 6$	0	0	0	$-1 / 12$	$2 M-3 / 4$	$2 M+1 / 4$	0
21	1	0	0	$1 / 2$	$1 / 2$	$-1 / 2$	0
$1 / 2$	0	1	0	$-3 / 4$	$1 / 4$	$1 / 4$	0
0	0	0	0	0	-1	-1	1
$1 / 3$	0	0	1	$1 / 3$	0	0	0

Note that all artificial variables have already been driven to 0 .
Basis change: x_{4} enters the basis, x_{3} leaves.

Fifth iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-7 / 4$	0	0	$1 / 4$	0	$2 M-3 / 4$	$2 M+1 / 4$	0
$1 / 2$	1	0	$-3 / 2$	0	$1 / 2$	$-1 / 2$	0
$5 / 4$	0	1	$9 / 4$	0	$1 / 4$	$1 / 4$	0
0	0	0	0	0	-1	-1	1
1	0	0	3	1	0	0	0

We now have an optimal solution of the auxiliary problem, as all costs are nonnegative (M presumed large enough)

By dimiating the third row as in the previous example, we get a basic feasible and also optimal solution to the original problem.

Fifth iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-7 / 4$	0	0	$1 / 4$	0	$2 M-3 / 4$	$2 M+1 / 4$	0
$1 / 2$	1	0	$-3 / 2$	0	$1 / 2$	$-1 / 2$	0
$5 / 4$	0	1	$9 / 4$	0	$1 / 4$	$1 / 4$	0
0	0	0	0	0	-1	-1	1
1	0	0	3	1	0	0	0

We now have an optimal solution of the auxiliary problem, as all costs are nonnegative (M presumed large enough).
feasible and also optimal solution to the original problem.

Fifth iteration

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$-7 / 4$	0	0	$1 / 4$	0	$2 M-3 / 4$	$2 M+1 / 4$	0
$1 / 2$	1	0	$-3 / 2$	0	$1 / 2$	$-1 / 2$	0
$5 / 4$	0	1	$9 / 4$	0	$1 / 4$	$1 / 4$	0
0	0	0	0	0	-1	-1	1
1	0	0	3	1	0	0	0

We now have an optimal solution of the auxiliary problem, as all costs are nonnegative (M presumed large enough).

By elimiating the third row as in the previous example, we get a basic feasible and also optimal solution to the original problem.

[^0]: Remark: (2) is not an outcome but only an intermediate result leading to outcome (3) or (4).

