3.7 Computational efficiency of the simplex method

Observation

The computational efficiency of the simplex method is determined by

- the computational effort of each iteration;
- the number of iterations.

Question

How many iterations are needed in the worst case?

Idea for negative answer (lower bound)

Describe

- a polyhedron with an exponential number of vertices;
- a path that visits all vertices and always moves from a vertex to an adjacent one that has lower costs.

Martin Skutella (TU Berlin)

Linear and Integer Programming (ADM II)

WS 2007/08

Computational efficiency of the simplex method

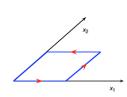
Unit cube

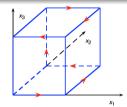
Consider the unit cube in \mathbb{R}^n , defined by the constraints

$$0 \le x_i \le 1, \quad i = 1, \ldots, n$$

The unit cube has

- 2ⁿ vertices:
- a spanning path, i.e. a path traveling the edges of the cube visiting each vertex exactly once.





Computational efficiency of the simplex method

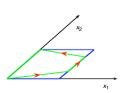
Klee-Minty cube

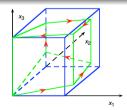
Consider a perturbation of the unit cube in \mathbb{R}^n , defined by the constraints

$$0 \le x_1 \le 1,$$

$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i = 2, \dots, n$$

for some $\epsilon \in (0, 1/2)$.





Computational efficiency of the simplex method

Klee-Minty cube

$$0 \le x_1 \le 1,$$

 $\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i = 2, ..., n, \epsilon \in (0, 1/2)$

Theorem

Consider the linear programming problem of minimizing $-x_n$ subject to the constraints above. Then:

- The feasible set has 2^n vertices.
- 2 The vertices can be ordered so that each one is adjacent to and has lower cost than the previous one.
- **3** There exists a pivoting rule under which the simplex method requires $2^{n} - 1$ changes of basis before it terminates.

The diameter of polyhedra

Definition

- The distance d(x, y) between two vertices x, y is the minimum number of edges required to reach v starting from x.
- The diameter D(P) of polyhedron P is the maximum d(x, y) over all pairs of vertices (x, y).
- $\Delta(n,m)$ is the maximum D(P) over all bounded polyhedra in \mathbb{R}^n that are represented in terms of m inequality constraints.
- $\Delta_{u}(n,m)$ is the maximum D(P) over all polyhedra in \mathbb{R}^{n} that are represented in terms of *m* inequality constraints.

 $\Delta(2,8) = \left\lfloor \frac{8}{2} \right\rfloor = 4$

 $\Delta_{\mu}(2,8) = 8 - 2 = 6$

Average case behavior of the simplex method

Remark

- Despite the exponential lower bounds on the worst case behavior of the simplex method (Klee-Minty cubes etc.), the simplex method usually behaves well in practice.
- The number of iterations is "typically" O(m).
- There have been several attempts to explain this phenomenon from more a theoretical point of view.
- These results say that "on average" the number of iterations is $O(\cdot)$ (usually polynomial).
- One main difficulty is to come up with a meaningful and, at the same time, manageable definition of the term "on average".

Martin Skutella (TU Berlin)

The Hirsch Conjecture

Observation

The diameter of the feasible set in a linear programming problem is a lower bound on the number of steps required by the simplex method, no matter which pivoting rule is being used.

Hirsch Conjecture

$$\Delta(n,m) \leq m-n$$

Known bounds

- Lower bounds: $\Delta_u(n,m) \geq m-n+\left\lfloor \frac{n}{5} \right\rfloor$
- Upper bounds:

$$\Delta(n,m) \leq \Delta_u(n,m) < m^{1+\log_2 n} = (2n)^{\log_2 m}$$