
3.7 Computational efficiency of the simplex method

Observation
The computational efficiency of the simplex method is determined by

1 the computational effort of each iteration;

2 the number of iterations.

Question
How many iterations are needed in the worst case?

Idea for negative answer (lower bound)

Describe

a polyhedron with an exponential number of vertices;

a path that visits all vertices and always moves from a vertex to an
adjacent one that has lower costs.
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Computational efficiency of the simplex method
Unit cube
Consider the unit cube in Rn, defined by the constraints

0 ≤ xi ≤ 1, i = 1, . . . , n

The unit cube has

2n vertices;

a spanning path, i.e. a path traveling the edges of the cube visiting
each vertex exactly once.
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Computational efficiency of the simplex method
Klee-Minty cube

Consider a perturbation of the unit cube in Rn, defined by the constraints

0 ≤ x1 ≤ 1,

εxi−1 ≤ xi ≤ 1− εxi−1, i = 2, . . . , n

for some ε ∈ (0, 1/2).
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Computational efficiency of the simplex method

Klee-Minty cube

0 ≤ x1 ≤ 1,

εxi−1 ≤ xi ≤ 1− εxi−1, i = 2, . . . , n, ε ∈ (0, 1/2)

Theorem
Consider the linear programming problem of minimizing −xn subject to the
constraints above. Then:

1 The feasible set has 2n vertices.

2 The vertices can be ordered so that each one is adjacent to and has
lower cost than the previous one.

3 There exists a pivoting rule under which the simplex method requires
2n − 1 changes of basis before it terminates.
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The diameter of polyhedra

Definition

The distance d(x , y) between two vertices x , y is the minimum
number of edges required to reach y starting from x .

The diameter D(P) of polyhedron P is the maximum d(x , y) over all
pairs of vertices (x , y).

∆(n,m) is the maximum D(P) over all bounded polyhedra in Rn that
are represented in terms of m inequality constraints.

∆u(n,m) is the maximum D(P) over all polyhedra in Rn that are
represented in terms of m inequality constraints.
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The Hirsch Conjecture

Observation
The diameter of the feasible set in a linear programming problem is a
lower bound on the number of steps required by the simplex method, no
matter which pivoting rule is being used.

Hirsch Conjecture

∆(n,m) ≤ m − n

Known bounds

Lower bounds: ∆u(n,m) ≥ m − n +
⌊

n
5

⌋

Upper bounds:

∆(n,m) ≤ ∆u(n,m) < m1+log2 n = (2n)log2 m
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Average case behavior of the simplex method

Remark
Despite the exponential lower bounds on the worst case behavior of
the simplex method (Klee-Minty cubes etc.), the simplex method
usually behaves well in practice.

The number of iterations is “typically” O(m).

There have been several attempts to explain this phenomenon from
more a theoretical point of view.

These results say that “on average” the number of iterations is O(·)
(usually polynomial).

One main difficulty is to come up with a meaningful and, at the same
time, manageable definition of the term “on average”.
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