Technische Universität Berlin Institut für Mathematik PROF. DR. P. WITTBOLD MARTHA HUBSKI

www.math.tu-berlin.de/Vorlesungen/WS08/Analysis3/

12. Übungsblatt zur VL Analysis III

Lebesguemaß

Abgabe: 22.01.2009 vor Beginn der Übung

ÜBUNG

1. Aufgabe

Sei $\mathcal{R} \subseteq \mathcal{P}(S)$ ein Ring und $\mu : \mathcal{R} \to [0, \infty]$ ein Prämaß. Zeige anhand eines Beispiels, dass die Fortsetzung von μ zu einem Maß auf $\sigma(\mathcal{R})$ im Allgemeinen nicht eindeutig ist.

2. Aufgabe

Beweise die folgenden Eigenschaften des Lebesguemaßes:

a) (Translationsinvarianz)

Für jede Borelmenge $A \in \mathcal{B}_0(\mathbb{R}^N)$ gilt

$$\lambda^N(x+A) = \lambda^N(A) \quad \forall x \in \mathbb{R}^N.$$

b) (Regularität)

Für jede Borelmenge $A \in \mathcal{B}_0(\mathbb{R}^N)$ gilt

$$\lambda^{N}(A) = \inf\{\lambda^{N}(O) \mid A \subseteq O, O \text{ offen}\}$$
$$= \sup\{\lambda^{N}(K) \mid K \subseteq A, K \text{ kompakt}\}.$$

3. Aufgabe

Zeige, dass Mengen existieren, die nicht Borel- bzw. Lebesgue-messbar sind, d.h es gilt

$$\mathcal{B}_N := \mathcal{B}_0(\mathbb{R}^N) \neq \mathcal{P}(\mathbb{R}^N)$$
 bzw. $\mathcal{L}_N := \mathcal{M}_{(\lambda^N)^*} \neq \mathcal{P}(\mathbb{R}^N)$.

HAUSAUFGABEN

1. Aufgabe (14 Punkte)

Gegeben sei der Ring $\mathcal{R} = \{ A \subseteq \mathbb{R} \mid A \text{ oder } \mathbb{R} \setminus A \text{ ist endlich} \}$ und $\mu_1, \mu_2 : \mathcal{R} \to [0, \infty]$ seien definiert durch

$$\mu_1(A) = \begin{cases} 0 & \text{falls } A \text{ endlich ist,} \\ 1 & \text{sonst.} \end{cases}, \quad \mu_2(A) = \begin{cases} 0 & \text{falls } A \text{ endlich ist,} \\ \infty & \text{sonst.} \end{cases}$$

- a) Zeige, dass μ_1 und μ_2 Prämaße auf \mathcal{R} sind.
- b) Bestimme die zugehörigen äußeren Maße μ_1^* und μ_2^* sowie die Mengen $\mathcal{M}_{\mu_1^*}$ und $\mathcal{M}_{\mu_2^*}$.
- c) Ist die Fortsetzung von μ_1^* und μ_2^* zu Maßen auf $\sigma(\mathcal{R})$ bzw. $\mathcal{M}_{\mu_1^*}$ und $\mathcal{M}_{\mu_2^*}$ eindeutig?

2. Aufgabe (8 Punkte)

Sei μ ein σ -endliches Prämaß auf einem Ring $\mathcal{R} \subseteq \mathcal{P}(S)$. Zeige, dass für alle $A \subseteq S$ die folgenden Aussagen äquivalent sind:

- a) $A \in \mathcal{M}_{\mu^*}$.
- b) Es existiert ein $N \subseteq S$ mit $\mu^*(N) = 0$ und $A \cup N \in \sigma(\mathcal{R})$.

3. Aufgabe (6 Punkte)

Sei (S, \mathcal{A}, μ) ein Maßraum. Zeige, dass die Abbildung

$$\overline{\mu}: \overline{\mathcal{A}} \to [0, \infty], \quad A \cup N \mapsto \mu(A)$$

wie in Satz 11.3.9 aus der Vorlesung ein vollständiges Maß auf $\overline{\mathcal{A}}$ definiert.

4. Aufgabe (Lebesgue-Stieltjes-Maß)

(12 Punkte)

Sei $F: \mathbb{R} \to \mathbb{R}$ eine monoton wachsende, rechtsseitig stetige Funktion, d.h. es gilt

$$\lim_{t \searrow t_0} F(t) = F(t_0) \quad \forall \, t_0 \in \mathbb{R}.$$

a) Zeige, dass genau ein Prämaß μ_F auf \mathcal{F}^1 existiert mit der Eigenschaft

$$\mu_F((a,b]) = F(b) - F(a).$$

- b) Zeige, dass sich μ_F eindeutig zu einem Maß auf $\mathcal{B}_0(\mathbb{R})$ (dem sog. Lebesgue-Stieltjes-Maß) fortsetzen lässt.
- c) Zeige, dass jedes Maß auf $\mathcal{B}_0(\mathbb{R})$, welches auf kompakten Teilmengen von \mathbb{R} endlich ist, ein Lebesgue-Stieltjes-Maß ist.

Hinweis: Betrachte die Funktion F mit $F(x) = \mu([0,x))$ wenn $x \ge 0$, $F(x) = -\mu([x,0))$ sonst.

(Gesamtpunktzahl: 40 Punkte)