TU BERLIN Department of Mathematics Prof. Dr. Martin Skutella Daniel Dressler

Exercise XI

Problem 1

Consider the following scheduling problem: Given n jobs with processing times p_i , due dates d_i and penalties w_i , $1 \le i \le n$, the cost of a schedule is the sum of the w_i over all jobs i that finished after their due dates. The objective is to find a schedule that minimizes this sum (using only one machine and jobs cannot be preempted).

Give a dynamic programming algorithm that runs in $\mathcal{O}^*(2^n)$.

Problem 2

The Hamiltonian Path Problem asks whether an undirected graph G has a path containing all vertices. We want to develop an algorithm that computes the number of Hamiltonian Paths in G and, in particular, this algorithm can decide the Hamiltonian Path Problem.

Let G = (V, E) with $V = \{1, ..., n\}$. Assume that a Hamiltonian path (if it exists) starts in vertex 1 and ends in vertex n.

A walk in G consists of vertices v_1, \ldots, v_k such that there is an edge from $\{v_i, v_{i+1}\} \in E$ for all $1 \le i \le k-1$. Note that vertices may be visited many times in a walk.

For $S \subseteq V$, let W(S) denote the set of walks in G of length n, starting in 1 and ending in n, that do not visit any vertex in S.

- i) Show that for any $S \subseteq V$, |W(S)| can be computed in polynomial time using exponentiation of the adjacency matrix of G.
- ii) Show that the number of Hamiltonian paths starting at 1 and ending in n is

$$|W(\emptyset)| - \left| \bigcup_{k=2}^{n-1} W(\{k\}) \right|.$$

iii) Show that this expression is the same as

$$\sum_{S\subseteq V} (-1)^{|S|} |W(S)|.$$

iv) Give an algorithm that computes the number of Hamiltonian paths in G using time $\mathcal{O}^*(2^n)$ and polynomial space.