Exercise XI

Problem 1

Consider the following scheduling problem: Given n jobs with processing times p_{i}, due dates d_{i} and penalties $w_{i}, 1 \leq i \leq n$, the cost of a schedule is the sum of the w_{i} over all jobs i that finished after their due dates. The objective is to find a schedule that minimizes this sum (using only one machine and jobs cannot be preempted)

Give a dynamic programming algorithm that runs in $\mathcal{O}^{*}\left(2^{n}\right)$.

Problem 2

The Hamiltonian Path Problem asks whether an undirected graph G has a path containing all vertices. We want to develop an algorithm that computes the number of Hamiltonian Paths in G and, in particular, this algorithm can decide the Hamiltonian Path Problem.
Let $G=(V, E)$ with $V=\{1, \ldots, n\}$. Assume that a Hamiltonian path (if it exists) starts in vertex 1 and ends in vertex n.
A walk in G consists of vertices v_{1}, \ldots, v_{k} such that there is an edge from $\left\{v_{i}, v_{i+1}\right\} \in E$ for all $1 \leq i \leq$ $k-1$. Note that vertices may be visited many times in a walk.
For $S \subseteq V$, let $W(S)$ denote the set of walks in G of length n, starting in 1 and ending in n, that do not visit any vertex in S.
i) Show that for any $S \subseteq V,|W(S)|$ can be computed in polynomial time using exponentiation of the adjacency matrix of G.
ii) Show that the number of Hamiltonian paths starting at 1 and ending in n is

$$
|W(\emptyset)|-\left|\bigcup_{k=2}^{n-1} W(\{k\})\right| .
$$

iii) Show that this expression is the same as

$$
\sum_{S \subseteq V}(-1)^{|S|}|W(S)| .
$$

iv) Give an algorithm that computes the number of Hamiltonian paths in G using time $\mathcal{O}^{*}\left(2^{n}\right)$ and polynomial space.

