Exercise II

Problem 1

Show the following inclusions:
a) $\operatorname{TIME}(g) \subseteq \operatorname{SPACE}(\mathcal{O}(g))$ for all functions $g: \mathbb{N} \rightarrow \mathbb{N}$.
b) LOGSPACE \subseteq P.
c) NPSPACE \subseteq PSPACE.

Problem 2

Languages that can be decided by a 1-string input/output TM are called "regular languages".
a) Recall the restrictions imposed on a 1-string input/output TM.
b) Show that $L=\left\{x \in\{0,1\}^{*}: x\right.$ contains at least two 0 s but not two consecutive 0 s$\}$ is regular.
c) Show that for any infinite regular language there exist $x, y, z \in \Sigma^{*}$ such that $y \neq \epsilon$ and $x y^{i} z \in L \forall i \geq 0$.
d) Show that $L=\{\operatorname{bin}(1) \operatorname{bin}(2) \ldots \operatorname{bin}(n): n \geq 1\}=\{1,110,11011,11011100, \ldots\}$ is not regular.

Note: It can be shown that $\operatorname{SPACE}(\mathcal{O}(1))$ is exactly the set of regular languages.

Problem 3

Show that a k-string nondeterministic TM can be emulated by a 2 -string nondeterministic TM with the same alphabet and the same running time (up to a constant factor).
Hint: Use the 2 nd string to guess the behavior of Δ, then check all k strings independently.

