Exercise III

Problem 1

Recall that a 1-string input/output TM can w.l.o.g. be represented by a simpler mapping

$$
\delta^{\prime}: K \times \Sigma \rightarrow K \cup\{\text { 'yes', 'no', 'halt'\}. }
$$

Similarly, a non-deterministic 1 -string I/O TM can be represented by a special relation on $K \times \Sigma \times K$.
a) Consider $L=\left\{x \sigma: \sigma \in \Sigma, x \in(\Sigma \backslash\{\sigma\})^{*}\right\}$. Describe a non-deterministic 1-string input/output TM that decides L.
b) Show that any non-deterministic 1 -string I/O TM can be made deterministic.

Problem 2

Suppose M is a Turing Machine with $\operatorname{space}_{M}(n) \in o(\log \log n)$. Show that this machine uses only constant space.

Problem 3

Describe languages for the following problems. Which of these languages are recursive, which recursively enumerable, which neither?
a) Decide whether a given graph contains a cycle.
b) Decide whether a given graph contains a cycle of a given size.
c) Decide whether a turing machine halts when started on the empty string.

