Exercise IV

Problem 1

Try to find the shortest possible Boolean expressions for each of the following Boolean expressions.
i) $x \vee \neg x$
ii) $(y \Rightarrow x) \vee x$
iii) $((x \Rightarrow y) \Rightarrow(y \Rightarrow z)) \Rightarrow(x \Rightarrow z)$

Problem 2

Rewrite

$$
\left(x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee y_{2}\right) \wedge \ldots \wedge\left(x_{n} \vee y_{n}\right)
$$

in disjunctive normal form.

Problem 3

Let $\mathcal{T} \subseteq\{\text { true }, \text { false }\}^{n}$ be a set of truth assignments. Then there is a Boolean expression Φ such that \mathcal{T} is exactly the set of truth assignments satisfying Φ. We want to investigate under what conditions on \mathcal{T} we can express Φ as a conjunction of Horn clauses.

Some notation: $T:=T_{1} \wedge T_{2}$ is the truth assignment $T(x):=T_{1}(x) \wedge T_{2}(x)$. And we define a partial order \leq with $T_{1} \leq T_{2}$ if $T_{1}(x)=$ true implies $T_{2}(x)=$ true.

Now show the equivalence of the following three statements:
i) \mathcal{T} is the set of truth assignments satisfying a conjunction of Horn clauses.
ii) If $T_{1}, T_{2} \in \mathcal{T}$, then $T_{1} \wedge T_{2} \in \mathcal{T}$.
iii) If $T \notin \mathcal{T}$ (more precisely $T \in\{\text { true, false }\}^{n} \backslash \mathcal{T}$), then $S:=\left\{T^{\prime} \in \mathcal{T}: T \leq T^{\prime}\right\}$ is either empty or there exists a unique $T^{*} \in S$ such that $T^{*} \leq T^{\prime} \forall T^{\prime} \in S$.

