Complexity theory and fixed parameter algorithms Winter term 2008

xutena

Problem 1

Try to find the shortest possible Boolean expressions for each of the following Boolean expressions.

Exercise IV

i)
$$x \vee \neg x$$

ii)
$$(y \Rightarrow x) \lor x$$

iii)
$$((x \Rightarrow y) \Rightarrow (y \Rightarrow z)) \Rightarrow (x \Rightarrow z)$$

Problem 2

Rewrite

$$(x_1 \lor y_1) \land (x_2 \lor y_2) \land \ldots \land (x_n \lor y_n)$$

in disjunctive normal form.

Problem 3

Let $\mathcal{T} \subseteq \{\text{true}, \text{false}\}^n$ be a set of truth assignments. Then there is a Boolean expression Φ such that \mathcal{T} is exactly the set of truth assignments satisfying Φ . We want to investigate under what conditions on \mathcal{T} we can express Φ as a conjunction of Horn clauses.

Some notation: $T := T_1 \wedge T_2$ is the truth assignment $T(x) := T_1(x) \wedge T_2(x)$. And we define a partial order \leq with $T_1 \leq T_2$ if $T_1(x) =$ true implies $T_2(x) =$ true.

Now show the equivalence of the following three statements:

- i) \mathcal{T} is the set of truth assignments satisfying a conjunction of Horn clauses.
- ii) If $T_1, T_2 \in \mathcal{T}$, then $T_1 \wedge T_2 \in \mathcal{T}$.
- iii) If $T \notin \mathcal{T}$ (more precisely $T \in \{\text{true}, \text{false}\}^n \setminus \mathcal{T}$), then $S := \{T' \in \mathcal{T} : T \leq T'\}$ is either empty or there exists a unique $T^* \in S$ such that $T^* \leq T' \forall T' \in S$.

TU BERLIN Department of Mathematics Prof. Dr. Martin Skutella Daniel Dressler