TU BERLIN Department of Mathematics Prof. Dr. Martin Skutella Daniel Dressler

Exercise V

Problem 1 (again)

Let $\mathcal{T} \subseteq \{\text{true}, \text{false}\}^n$ be a set of truth assignments. Then there is a Boolean expression Φ such that \mathcal{T} is exactly the set of truth assignments satisfying Φ . We want to investigate under what conditions on \mathcal{T} we can express Φ as a conjunction of Horn clauses.

Some notation: $T := T_1 \wedge T_2$ is the truth assignment $T(x) := T_1(x) \wedge T_2(x)$. And we define a partial order \leq with $T_1 \leq T_2$ if $T_1(x) =$ true implies $T_2(x) =$ true.

Now show the equivalence of the following three statements:

- i) \mathcal{T} is the set of truth assignments satisfying a conjunction of Horn clauses.
- ii) If $T_1, T_2 \in \mathcal{T}$, then $T_1 \wedge T_2 \in \mathcal{T}$.
- iii) If $T \notin \mathcal{T}$ (more precisely $T \in \{\text{true}, \text{false}\}^n \setminus \mathcal{T}$), then $S := \{T' \in \mathcal{T} : T \leq T'\}$ is either empty or there exists a unique $T^* \in S$ such that $T^* \leq T' \forall T' \in S$.

Problem 2

A Boolean function f is called monotone if switching a variable from false to true cannot change the result of f from true to false. Show that a Boolean function f is monotone if and only if it can be expressed by a Boolean circuit without negations.

Problem 3

Consider a vocabulary with a constant c, variables x, y, z_n , *n*-ary functions f_n , and *n*-ary relations R_n . Formalize this as a vocabulary $\Sigma = (\Phi, \Pi, r)$ and a set of vocabulary V.

Which of the following strings are first-order logic terms or expressions for this vocabulary?

i) $f_3(f_0, c, x)$	iv) $\forall x \forall x = (f_2(x, x), x)$
ii) $(\neg x \lor y)$	v) $\phi = R_n(z_1, z_2, \dots, z_n)$
iii) $\forall x \forall y R_2(x, y)$	vi) $(R_1(f_1(x)) \land \neg R_1(f_1(x)))$

Problem 4

Try to find first-order logic expressions for the following statements ...

a) ... from number theory:

- i) Every x has a successor x + 1.
- ii) All numbers are equal.
- iii) If there is a x such that x is the successor of every element, then all elements are equal.
- b) ... from graph theory:
 - i) The graph is symmetric.
 - ii) There is a path from x to y.