Complexity theory and fixed parameter algorithms Winter term 2008

TU BERLIN Department of Mathematics Prof. Dr. Martin Skutella Daniel Dressler

Exercise VII

Problem 1

Consider the group theory vocabulary. The following are the group axioms:

- i) $\forall x \forall y \forall z ((x \circ y) \circ z \equiv x \circ (y \circ z))$
- ii) $\forall x(x \circ 1 \equiv x)$
- iii) $\forall x \exists y (x \circ y \equiv 1)$

Show that no proper subset of these axioms implies another of the axioms, that is, the axioms are "independent".

Problem 2

Prove theorem 17 and 18 from the lecture:

- i) Theorem 17: Suppose that $\Delta \cup \{\phi\} \vdash \psi$, then $\Delta \vdash \phi \Rightarrow \psi$. Hint: Use induction on the first-order logic proof used for $\Delta \cup \{\phi\} \vdash \psi$.
- ii) Theorem 18: If $\Delta \cup \{\neg \phi\}$ is inconsistent, then $\Delta \vdash \phi$. Hint: This is a corollary from theorem 17.

Problem 3

Gödel's completeness theorem says that if a set Δ of axioms is consistent, then it has a model. Use this to prove the following "compactness theorem for first-order logic": If all finite subsets of a set of sentences Δ are satisfiable, then Δ is satisfiable.