TU BERLIN Department of Mathematics Prof. Dr. Martin Skutella Daniel Dressler

Exercise IX

Problem 1

Show that the field of real numbers \mathbb{R} cannot be described in first-order logic.

More precisely: Show that there is no *countable* set of first-order axioms such that every model satisfying these axioms is isomorphic to $(\mathbb{R}, 0, 1, +, \cdot, <)$.

Problem 2

It is known, that the set $\{\Phi : \mathbb{R} \models \Phi\}$ is decidable for the vocabulary $0, 1, +, \cdot, <$. For a proof, we will restrict us to the case where multiplication is restricted to produce *linear terms only*.

Let Φ be a sentence in prenex normal form such that $\mathbb{R} \models \Phi$. So Φ looks like

$$Q_1x_1Q_2x_2\dots Q_nx_n\psi(x_1,\dots,x_n)$$

where $Q_i \in \{\exists, \forall\}$ and ψ contains no quantifiers.

We want to come up with a way to remove $Q_n x_n$ from Φ to obtain a sentence

$$\Phi' = Q_1 x_1 Q_2 x_2 \dots Q_{n-1} x_{n-1} \psi'(x_1, \dots, x_{n-1}).$$

For this:

a) Show that $\psi(x_1,\ldots,x_n)$ is a Boolean combination of k atomic expressions that can be written as

$$\underline{x_n \gtrless l_i(x_1,\ldots,x_{n-1})},$$

where the l_i , $1 \le i \le k$, are affine functions with rational coefficients, and some more atomic expressions that do not contain x_n .

- b) Assume $Q_n = \forall$. Show that ψ' can be taken to be $\underline{\bigwedge_{t \in T} \psi[x_n \leftarrow t]}$ where T is the set containing the following terms:
 - i) $l_i(x_1, \ldots, x_{n-1}), 1 \le i \le k$,
 - ii) $\frac{1}{2}(l_i(x_1, \dots, x_{n-1}) + l_j(x_1, \dots, x_{n-1})), 1 \le i < j \le k,$
 - iii) $l_i(x_1, \ldots, x_{n-1}) 1, 1 \le i \le k$,
 - iv) $l_i(x_1, \ldots, x_{n-1}) + 1, 1 \le i \le k$.
- c) Now consider $Q_n = \exists$. Reduce this to the case above.
- d) Finish the induction.
- e) Conclude that $\{\Phi : \mathbb{R} \models \Phi\}$ with this restricted multiplication can be decided (in double-exponential time).