Exercise IX

Problem 1

Show that the field of real numbers \mathbb{R} cannot be described in first-order logic.
More precisely: Show that there is no countable set of first-order axioms such that every model satisfying these axioms is isomorphic to $(\mathbb{R}, 0,1,+, \cdot,<)$.

Problem 2

It is known, that the set $\{\Phi: \mathbb{R} \vDash \Phi\}$ is decidable for the vocabulary $0,1,+, \cdot,<$. For a proof, we will restrict us to the case where multiplication is restricted to produce linear terms only.

Let Φ be a sentence in prenex normal form such that $\mathbb{R} \vDash \Phi$. So Φ looks like

$$
\underline{Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)}
$$

where $Q_{i} \in\{\exists, \forall\}$ and ψ contains no quantifiers.
We want to come up with a way to remove $Q_{n} x_{n}$ from Φ to obtain a sentence

$$
\Phi^{\prime}=\underline{Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n-1} x_{n-1} \psi^{\prime}\left(x_{1}, \ldots, x_{n-1}\right) .}
$$

For this:
a) Show that $\psi\left(x_{1}, \ldots, x_{n}\right)$ is a Boolean combination of k atomic expressions that can be written as

$$
x_{n} \gtreqless l_{i}\left(x_{1}, \ldots, x_{n-1}\right),
$$

where the $l_{i}, 1 \leq i \leq k$, are affine functions with rational coefficients, and some more atomic expressions that do not contain x_{n}.
b) Assume $Q_{n}=\forall$. Show that ψ^{\prime} can be taken to be $\underline{\bigwedge_{t \in T} \psi\left[x_{n} \leftarrow t\right]}$ where T is the set containing the following terms:
i) $\underline{l_{i}\left(x_{1}, \ldots, x_{n-1}\right)}, 1 \leq i \leq k$,
ii) $\underline{\frac{1}{2}\left(l_{i}\left(x_{1}, \ldots, x_{n-1}\right)+l_{j}\left(x_{1}, \ldots, x_{n-1}\right)\right)}, 1 \leq i<j \leq k$,
iii) $\underline{l_{i}\left(x_{1}, \ldots, x_{n-1}\right)-1,1 \leq i \leq k \text {, }}$
iv) $l_{i}\left(x_{1}, \ldots, x_{n-1}\right)+1,1 \leq i \leq k$.
c) Now consider $Q_{n}=\exists$. Reduce this to the case above.
d) Finish the induction.
e) Conclude that $\{\Phi: \mathbb{R} \vDash \Phi\}$ with this restricted multiplication can be decided (in double-exponential time).

