ADM III: Linear and convex optimization in game theory, WS 2008/09
Technische Universität Berlin
Institut für Mathematik
Dr. Britta Peis, Dr. Tobias Harks

Assignment 2

- Solutions -

Exercise 1. Let Γ_{a} and Γ_{b} be two zero-sum matrix games which are defined by the following two payoff matrices of the row player (i.e., the first player).
a)

$$
\left[\begin{array}{cc}
1 & 0 \\
-2 & 4
\end{array}\right]
$$

b)

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right]
$$

Determine the optimal maxmin-strategy for the first player in the corresponding randomized matrix games.

Solution: In general, if $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ is the payoff matrix of the first player in a zero-sum game, the optimal maxmin-strategy (and therefore, P_{1} 's strategy in a NE) is an optimal solution of
$\max z$

$$
\begin{aligned}
& \sum_{i=1}^{m} a_{i j} x_{i} \geq z \quad \forall j=1, \ldots, m \\
& x \in \Delta_{m}
\end{aligned}
$$

In case of (2×2)-matrices, we have $\left(x_{1}, x_{2}\right) \in \Delta_{2}$ iff $x_{2}=1-x_{1}$.
a) In this special case, we obtain an optimal strategy for P_{1} by solving

$$
\begin{aligned}
& \max _{x \geq 0} z \\
& x-2(1-x) \geq z \\
& 4(1-x) \geq z .
\end{aligned}
$$

with unique optimal solution $x=\frac{6}{7}$. Thus, $\left(\frac{6}{7}, \frac{1}{7}\right)$ is an optimal strategy for player 1 .
b) Here, we need to solve

$$
\begin{array}{rl}
\max _{x \geq 0} & z \\
& x+2(1-x) \geq z \\
& 3 x \geq z
\end{array}
$$

with unique optimal solution $\frac{1}{2}$. Thus, $\left(\frac{1}{2}, \frac{1}{2}\right)$. is an optimal strategy for P_{1}.

Exercise 2. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ be the payoff matrix of the row player in a zero-sum matrix game. We say that

- row i_{1} dominates row i_{2} if $a_{i_{1} j} \geq a_{i_{2} j}$ holds for all columns j, and
- column j_{1} dominates column j_{2} if $a_{i j_{1}} \leq a_{i j_{2}}$ holds for all rows i.
a) Show that in a randomized matrix game, dominated rows and columns can be ignored when optimal maxmin-strategies are to be calculated.
b) Determine an optimal maxmin-strategy for the row player in the randomized zero-sum matrix game with payoff matrix

$$
\left[\begin{array}{llll}
2 & 1 & 1 & 2 \\
1 & 2 & 0 & 2 \\
0 & 3 & 4 & 4 \\
1 & 3 & 5 & 4
\end{array}\right] .
$$

Solution:

a) Suppose row i_{1} dominates row i_{2} and consider an optimal solution x^{*} of
$\max z$

$$
\begin{aligned}
& \sum_{i=1}^{m} a_{i j} x_{i} \geq z \quad \forall j=1, \ldots, m \\
& x \in \Delta_{m}
\end{aligned}
$$

with objective value z^{*}. Construct the vector \hat{x} with

$$
\hat{x}_{i_{2}}=0, \quad \hat{x}_{i_{1}}=x_{i_{1}}^{*}+x_{i_{2}}^{*} \quad \text { and } \quad \hat{x}_{i}=x_{i}^{*} \quad \forall i \neq i_{1}, i_{2} .
$$

Since $a_{i_{1} j} \geq a_{i_{2} j}$ holds for all columns j, , we have that

$$
\sum_{j=1}^{n} a_{i j} \hat{x}_{i} \geq \sum_{j=1}^{n} a_{i j} x_{i}^{*} \quad \forall i=1, \ldots, m
$$

Thus, \hat{x} is a feasible solution and even optimal since the objecitve values are identical.
Now suppose that column j_{1} dominates column j_{2}. Note that the linear program above is equivalent to the problem

$$
\max _{x \in \Delta_{m}} \min _{j=1, \ldots, n, n} \underbrace{\sum_{i=1}^{m} a_{i j} x_{i}}_{=: z_{j}} .
$$

Since $a_{i j_{1}} \leq a_{i j_{2}}$ holds for all rows i, we have for all $x \in \Delta_{m}$ that

$$
z_{j_{1}}=\sum_{i=1}^{m} a_{i j_{1}} x_{i} \leq z_{j_{2}}=\sum_{i=1}^{m} a_{i j_{2}} x_{i} .
$$

It follows that

$$
\min _{j} z_{j}=\min _{j \neq j_{2}} z_{j},
$$

i.e., we get the same solution if we solve the problem without column j_{2}.
b) We can reduce the matrix, since

- row 4 dominates row 2 and row 3,
- column 3 dominates column 3 and column 4.

Removing the dominated rows and columns in that order yields the matrix

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & 3 .
\end{array}\right] .
$$

The corresponding optimization problem

$$
\begin{aligned}
& \max _{x \geq 0} z \\
& \quad 2 x+(1-x) \geq z \\
& x+3(1-x) \geq z
\end{aligned}
$$

has optimal solution $x=\frac{2}{3}$. Thus, $\left(\frac{2}{3}, \frac{1}{3}\right)$ is an optimal strategy for P_{1}.

Exercise 3. Consider the facility location game illustrated in Figure 1 .
a) Calculate an allocation vector $x \in \mathbb{R}^{3}$ in the core.
b) Extend the graph by adding a new facility such that the core of the modified game has an empty core.

Figure 1: Facility location game with two facilities and three players $N=\{a, b, c\}$.

Solution:

a) Any vector $x \in \mathbb{R}^{3}$ satisfying

$$
\begin{aligned}
x_{a}+x_{b}+x_{c} & =8 \\
x_{a}+x_{b} & \leq 6 \\
x_{b}+x_{c} & \leq 4 \\
x_{a}+x_{c} & \leq 7 \\
x_{a} & \leq 4 \\
x_{b} & \leq 4 \\
x_{c} & \leq 3
\end{aligned}
$$

lies in the core of the game. For example $x=(4,2,2)^{T}$.
b) Modify the game by adding a third facility as shown in Figure 2Then the core is empty

Figure 2: Facility location game with three facilities and three players $N=\{a, b, c\}$.
since any vector would need to satisfy the inequalities

$$
\begin{aligned}
x_{a}+x_{b}+x_{c} & =8 \\
x_{a}+x_{b} & \leq 6 \\
x_{b}+x_{c} & \leq 4 \\
x_{a}+x_{c} & \leq 5 .
\end{aligned}
$$

However, adding up the last three inequalities yields

$$
x_{a}+x_{b}+x_{c} \leq 7.5<8
$$

implying that there exists no solution of the inequality system.

Exercise 4. Let (N, c) be a cooperative cost game with $c(\emptyset)=0$. We define the corresponding dual payoff game by

$$
v(S):=c(N)-c(N \backslash S) \quad \forall S \subseteq N
$$

Show that both games have the same core.

Solution: Suppose $x \in$ core(c). Then obviously,

$$
x(N)=c(N)=c(N)-c(N \backslash N)=: v(N) .
$$

Moreover, for each $S \subseteq N$ it follows that

$$
v(S)=c(N)-c(N \backslash S) \geq x(N)-x(N \backslash S)=x(S),
$$

since $x(N \backslash S) \leq c(N \backslash S)$ must be true. Thus, $x \in \operatorname{core}(v)$ as well. Similiarly, if $x \in \operatorname{core}(v)$, then

$$
x(N)=v(N)=c(N)-c(N \backslash N)=c(N),
$$

and for each $S \subseteq N$, we have

$$
c(S)=c(N)-v(N \backslash S) \leq x(N)-x(N \backslash S)=x(S),
$$

since $x(N \backslash S) \geq v(N \backslash S)$ holds. Thus, $x \in$ core (c).

