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Exercise 1. Let Γa and Γb be two zero-sum matrix games which are defined by the
following two payoff matrices of the row player (i.e., the first player).

a) [
1 0
−2 4

]

b) [
1 3
2 0

]

Determine the optimal maxmin-strategy for the first player in the corresponding random-
ized matrix games.

Solution: In general, if A= (ai j ) ∈ R
m×n is the payoff matrix of the first player in a

zero-sum game, the optimal maxmin-strategy (and therefore, P1’s strategy in a NE) is an
optimal solution of

maxz
m

∑
i=1

ai j xi ≥ z ∀ j = 1, . . . ,m

x∈ ∆m.

In case of(2×2)-matrices, we have(x1,x2) ∈ ∆2 iff x2 = 1−x1.

a) In this special case, we obtain an optimal strategy for P1 by solving

max
x≥0

z

x−2(1−x) ≥ z

4(1−x) ≥ z.

with unique optimal solution x= 6
7. Thus,(6

7,
1
7) is an optimal strategy for player 1.
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b) Here, we need to solve

max
x≥0

z

x+2(1−x) ≥ z

3x≥ z.

with unique optimal solution12. Thus,(1
2,

1
2). is an optimal strategy for P1.

♦

Exercise 2. Let A = (ai j ) ∈ R
m×n be the payoff matrix of the row player in a zero-sum

matrix game. We say that

◦ row i1 dominatesrow i2 if ai1 j ≥ ai2 j holds for all columnsj, and

◦ column j1 dominatescolumn j2 if ai j1
≤ ai j2

holds for all rowsi.

a) Show that in a randomized matrix game, dominated rows and columns can be ignored
when optimal maxmin-strategies are to be calculated.

b) Determine an optimal maxmin-strategy for the row player in the randomized zero-sum
matrix game with payoff matrix







2 1 1 2
1 2 0 2
0 3 4 4
1 3 5 4







.

Solution:

a) Suppose row i1 dominates row i2 and consider an optimal solution x∗ of

maxz
m

∑
i=1

ai j xi ≥ z ∀ j = 1, . . . ,m

x∈ ∆m.

with objective value z∗. Construct the vector̂x with

x̂i2
= 0, x̂i1

= x∗i1 +x∗i2 and x̂i = x∗i ∀i 6= i1, i2.

Since ai1 j ≥ ai2 j holds for all columns j, , we have that

n

∑
j=1

ai j x̂i ≥
n

∑
j=1

ai j x
∗
i ∀i = 1, . . . ,m.
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Thus,x̂ is a feasible solution and even optimal since the objecitvevalues are identical.

Now suppose that column j1 dominates column j2. Note that the linear program above
is equivalent to the problem

max
x∈∆m

min
j=1,...,n

m

∑
i=1

ai j xi

︸ ︷︷ ︸

=:zj

.

Since ai j1 ≤ ai j2
holds for all rows i, we have for all x∈ ∆m that

zj1
=

m

∑
i=1

ai j1
xi ≤ zj2

=
m

∑
i=1

ai j2
xi .

It follows that
min

j
zj = min

j 6= j2
zj ,

i.e., we get the same solution if we solve the problem withoutcolumn j2.

b) We can reduce the matrix, since

◦ row 4 dominates row 2 and row 3,

◦ column 3 dominates column 3 and column 4.

Removing the dominated rows and columns in that order yieldsthe matrix
[

2 1
1 3.

]

.

The corresponding optimization problem

max
x≥0

z

2x+(1−x) ≥ z

x+3(1−x) ≥ z

has optimal solution x= 2
3. Thus,(2

3,
1
3) is an optimal strategy for P1.

♦

Exercise 3. Consider the facility location game illustrated in Figure 1.

a) Calculate an allocation vectorx∈ R
3 in the core.

b) Extend the graph by adding a new facility such that the coreof the modified game has
an empty core.
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ba c

2 2 1 1

f =21 f =22

Figure 1: Facility location game with two facilities and three playersN = {a,b,c}.

Solution:

a) Any vector x∈ R
3 satisfying

xa +xb +xc = 8

xa +xb ≤ 6

xb +xc ≤ 4

xa +xc ≤ 7

xa ≤ 4

xb ≤ 4

xc ≤ 3

lies in the core of the game. For example x= (4,2,2)T .

b) Modify the game by adding a third facility as shown in Figure 2 Then the core is empty

ba c

2 2 1 1

f =2

f =3

1 1

1 f =22

3

Figure 2: Facility location game with three facilities and three playersN = {a,b,c}.

since any vector would need to satisfy the inequalities

xa +xb +xc = 8

xa +xb ≤ 6

xb +xc ≤ 4

xa +xc ≤ 5.
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However, adding up the last three inequalities yields

xa +xb +xc ≤ 7.5 < 8

implying that there exists no solution of the inequality system.

♦

Exercise 4. Let (N,c) be a cooperative cost game withc( /0) = 0. We define the corre-
spondingdual payoff gameby

v(S) := c(N)−c(N\S) ∀S⊆ N.

Show that both games have the same core.

Solution: Suppose x∈ core(c). Then obviously,

x(N) = c(N) = c(N)−c(N \N) =: v(N).

Moreover, for each S⊆ N it follows that

v(S) = c(N)−c(N \S) ≥ x(N)−x(N\S) = x(S),

since x(N\S)≤ c(N\S) must be true. Thus, x∈ core(v) as well. Similiarly, if x∈ core(v),
then

x(N) = v(N) = c(N)−c(N\N) = c(N),

and for each S⊆ N, we have

c(S) = c(N)−v(N \S) ≤ x(N)−x(N\S) = x(S),

since x(N\S) ≥ v(N\S) holds. Thus, x∈ core(c). ♦

ADM III: Linear and convex optimization in game theory, Assignment 2 page 5/


