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Exercise 1. Let[5 andl, be two zero-sum matrix games which are defined by the
following two payoff matrices of the row player (i.e., thestiplayer).

X
2ol

Determine the optimal maxmin-strategy for the first playethie corresponding random-
ized matrix games.

a)

b)

Solution: In general, if A= (aij) e R™"N is the payoff matrix of the first player in a
zero-sum game, the optimal maxmin-strategy (and thergRestrategy in a NE) is an
optimal solution of

maxz

m
Z\aijxi >z Vji=1,...,m
i=
X € Am.
In case of(2 x 2)-matrices, we havéx;,X,) € A, iff x, = 1—X,.

a) Inthis special case, we obtain an optimal strategy fpb¥solving

maxz

x>0
X—2(1-x) >z
41-x) >z

with unique optimal solution x . Thus,($,3) is an optimal strategy for player 1.
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b) Here, we need to solve

maxz
x>0

X+2(1-x) >z
x>z

with unique optimal solutiog. Thus,(3,3). is an optimal strategy for P

O

Exercise2. LetA= (g;) € R™" be the payoff matrix of the row player in a zero-sum
matrix game. We say that

o rowi, dominatesowi, if & ; > & ; holds for all columng, and

o columnj,; dominatesolumnj, if &; <&; holds for all rows.

a) Show that in a randomized matrix game, dominated rows alunns can be ignored
when optimal maxmin-strategies are to be calculated.

b) Determine an optimal maxmin-strategy for the row plapehe randomized zero-sum
matrix game with payoff matrix

211 2
1 20 2
0 3 4 4
1 35 4

Solution:

a) Suppose row,idominates rowJj and consider an optimal solutiort xf
maxz

m

Z\aijxi >z Vji=1,...,m

i=

X € Am.

with objective value*z Construct the vectax with
%,=0, % =x +xX, and %=X Viip,i,

Since a; =8 holds for all columns j, , we have that

n n
=1 =1

ADM lII: Linear and convex optimization in game theory, Agsiment 2 page 2/



Thus X is a feasible solution and even optimal since the objecidhges are identical.

Now suppose that colump gominates column,j Note that the linear program above
Is equivalent to the problem

m
max min X
xeAmjzl,...,ni;a”X'
N——
=ZZJ-
Since z;a]-l < a”-2 holds for all rows i, we have for all € A, that

m m
i i;aijl)(i =%~ i;aijzxr

It follows that
m_inzj = mi_nzj,
J i#i;
i.e., we get the same solution if we solve the problem witbolumn §.
b) We can reduce the matrix, since

o row 4 dominates row 2 and row 3,
o column 3 dominates column 3 and column 4.

Removing the dominated rows and columns in that order ytblkelsnatrix

s

The corresponding optimization problem

maxz

x>0
2X+(1-x) >z
X+3(1—-x) >z

has optimal solution x 4. Thus,(3, 3) is an optimal strategy for

Exercise3. Consider the facility location game illustrated in Figlfe 1
a) Calculate an allocation vectere R3 in the core.

b) Extend the graph by adding a new facility such that the obtee modified game has
an empty core.
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Figure 1: Facility location game with two facilities and¢lerplayers\ = {a,b,c}.

Solution:

a) Any vector x R? satisfying

A DN NNO ®

Xa+X, +Xc
Xa+ X,

Xy +Xc
Xa+Xc

Xa

%b
Xe

lies in the core of the game. For example-X4,2,2)T.

(VAN VAN VANRR VANR VAR VAN

3

b) Modify the game by adding a third facility as shown in FigldrThen the core is empty

fi=2 f2:2

] =3

Figure 2: Facility location game with three facilities ahdee playerdN = {a, b, c}.

since any vector would need to satisfy the inequalities

Xa+X,+% = 8
Xat+¥, < 6
XtX < 4
XatX < 5
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However, adding up the last three inequalities yields
Xat+ X, +X <7.5<8

implying that there exists no solution of the inequalityteys

O

Exercise 4. Let(N,c) be a cooperative cost game witfD) = 0. We define the corre-
spondingdual payoff gaméy

V(S):=c(N)—c(N\S) VSCN.

Show that both games have the same core.

Solution: Suppose x core(c). Then obviously,
X(N) = c¢(N) =c(N) —c(N\ N) =: v(N).
Moreover, for each & N it follows that
v(S) = ¢(N) — ¢(N\ S) > X(N) ~x(N\'S) = x(S),

since XN\ S) <c(N\ S) must be true. Thus,xcore(v) as well. Similiarly, if xc core(v),
then
X(N) = V(N) = ¢(N) —¢(N\N) = ¢(N),

and for each & N, we have
c(S) =c(N) —V(N\'S) <x(N) —=x(N\ §) =x(S),

since XN\ S) > v(N\ S) holds. Thus, x core(c). O
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