ADM III: Linear and convex optimization in game theory, WS 2008/09 Technische Universität Berlin Institut für Mathematik Dr. Britta Peis, Dr. Tobias Harks

Assignment 2

Discussion: Friday, November 29, 2008.

Exercise 1. Let Γ_a and Γ_b be two zero-sum matrix games which are defined by the following two payoff matrices of the row player (i.e., the first player).

a)

b)

[1	3]	
1		
2	0	
L	·]	

 $\begin{bmatrix} 1 & 0 \\ -2 & 4 \end{bmatrix}$

Determine the optimal maxmin-strategy for the first player in the corresponding randomized matrix games.

Exercise 2. Let $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ be the payoff matrix of the row player in a zero-sum matrix game. We say that

- \circ row i_1 dominates row i_2 if $a_{i_1j} \ge a_{i_2j}$ holds for all columns j, and
- \circ column j_1 dominates column j_2 if $a_{ij_1} \le a_{ij_2}$ holds for all rows *i*.
- a) Show that in a randomized matrix game, dominated rows and columns can be ignored when optimal maxmin-strategies are to be calculated.
- b) Determine an optimal maxmin-strategy for the row player in the randomized zero-sum matrix game with payoff matrix

2	1	1	2 -]
1	2	0	2	
0	3	4	4	
1	3	5	4	

Exercise 3. Consider the facility location game illustrated in Figure 1.

- a) Calculate an allocation vector $x \in \mathbb{R}^3$ in the core.
- b) Extend the graph by adding a new facility such that the core of the modified game has an empty core.

Figure 1: Facility location game with two facilities and three players $N = \{a, b, c\}$.

Exercise 4. Let (N,c) be a cooperative cost game with $c(\emptyset) = 0$. We define the corresponding *dual payoff game* by

$$v(S) := c(N) - c(N \setminus S) \quad \forall S \subseteq N.$$

Show that both games have the same core.