ADM III: Linear and convex optimization in game theory, WS 2008/09
Technische Universität Berlin
Institut für Mathematik
Dr. Britta Peis, Dr. Tobias Harks

Assignment 2
Discussion: Friday, November 29, 2008.

Exercise 1. Let $\Gamma_{a}$ and $\Gamma_{b}$ be two zero-sum matrix games which are defined by the following two payoff matrices of the row player (i.e., the first player).
a)

$$
\left[\begin{array}{cc}
1 & 0 \\
-2 & 4
\end{array}\right]
$$

b)

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right]
$$

Determine the optimal maxmin-strategy for the first player in the corresponding randomized matrix games.

Exercise 2. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ be the payoff matrix of the row player in a zero-sum matrix game. We say that

- row $i_{1}$ dominates row $i_{2}$ if $a_{i_{1} j} \geq a_{i_{2} j}$ holds for all columns $j$, and
- column $j_{1}$ dominates column $j_{2}$ if $a_{i j_{1}} \leq a_{i j_{2}}$ holds for all rows $i$.
a) Show that in a randomized matrix game, dominated rows and columns can be ignored when optimal maxmin-strategies are to be calculated.
b) Determine an optimal maxmin-strategy for the row player in the randomized zero-sum matrix game with payoff matrix

$$
\left[\begin{array}{llll}
2 & 1 & 1 & 2 \\
1 & 2 & 0 & 2 \\
0 & 3 & 4 & 4 \\
1 & 3 & 5 & 4
\end{array}\right] .
$$

Exercise 3. Consider the facility location game illustrated in Figure 1.
a) Calculate an allocation vector $x \in \mathbb{R}^{3}$ in the core.
b) Extend the graph by adding a new facility such that the core of the modified game has an empty core.


Figure 1: Facility location game with two facilities and three players $N=\{a, b, c\}$.

Exercise 4. Let $(N, c)$ be a cooperative cost game with $c(\emptyset)=0$. We define the corresponding dual payoff game by

$$
v(S):=c(N)-c(N \backslash S) \quad \forall S \subseteq N
$$

Show that both games have the same core.

