ADM III: Linear and convex optimization in game theory, WS 2008/09
Technische Universität Berlin
Institut für Mathematik
Dr. Britta Peis, Dr. Tobias Harks

Assignment 3

- Solutions -

Exercise 1. Let $\Gamma=(N, v)$ be a cooperative payoff game with $v: 2^{N} \rightarrow \mathbb{R}_{+}$. If v is not superadditive, a coalition might achieve a better payoff if it splits into disjoint subsets. Thus, it makes sense to consider the extended game $\tilde{\Gamma}=(N, \tilde{v})$ with

$$
\tilde{v}(S)=\max \left\{\sum_{i} v\left(S_{i}\right) \mid S_{i} \subseteq S \text { and } S_{i} \cap S_{j}=\emptyset \text { if } i \neq j\right\} \quad \forall S \subseteq N .
$$

a) Show that \tilde{v} is monotone increasing and superadditive.
b) Show that if $v(N)=\tilde{v}(N)$, then $\operatorname{core}(v)=\operatorname{core}(\tilde{v})$.

Solution:

a) It follows by the definition that

$$
\begin{array}{cl}
S \subseteq T \quad \Longrightarrow \quad \tilde{v}(S) \leq \tilde{v}(T) \quad \text { and } \\
\tilde{v}(S)+\tilde{v}(T) \leq \tilde{v}(S \cup T) & \forall S, T \subseteq N \text { with } S \cap T=\emptyset .
\end{array}
$$

b) $\operatorname{core}(\tilde{v}) \subseteq \operatorname{core}(v)$ follows since $v \leq \tilde{v}$. To show the other direction, suppose that $x \in$ core(v). Since $v \geq 0$ it follows that $x \geq 0$. Consider an arbitrary coalition $S \subseteq N$ and let $\tilde{v}(S)=v\left(S_{1}\right)+\ldots+v\left(S_{k}\right)$ for pairwise disjoint subsets S_{1}, \ldots, S_{k} of S. Then,

$$
x\left(S_{1} \cup \ldots \cup S_{k}\right)=\sum_{i=1}^{k} x\left(S_{i}\right) \geq \sum_{i=1}^{k} v\left(S_{i}\right)=\tilde{v}(S) .
$$

Thus, $x \in \operatorname{core}(\tilde{v})$.

Exercise 2. Consider the game $\Gamma=(N, v)$ on three players $N=\{1,2,3\}$ whose payoff function is defined by $v(\})=v(\{1\})=v(\{2\})=v(\{3\})=0, v(\{1,2\})=v(\{2,3\})=$ $1, v(\{1,3\})=2$ and $v(\{1,2,3\})=4$. Determine all marginal vectors and the core of Γ.

Solution: We can calculate the marginal vectors greedily for each permution π via

$$
x_{\pi_{i}}^{\pi}=v\left(\left\{\pi_{1}, \ldots, \pi_{i}\right\}\right)-v\left(\left\{\pi_{1}, \ldots, \pi_{i-1}\right\}\right) \quad \forall i=1,2,3 .
$$

This way, we achieve the following marginal vectors:

π	x_{1}^{π}	x_{2}^{π}	x_{3}^{π}
123	0	1	$4-1=3$
132	0	2	$4-2=2$
213	1	0	3
231	3	0	1
312	2	2	0
321	3	1	0.

Since v is supermodular, we have

$$
\operatorname{core}(v)=\operatorname{conv}\left\{x^{\pi} \mid \pi \text { permuation of } N\right\} .
$$

Exercise 3. Let $N=\{1,2,3\}$ and $v: 2^{N} \rightarrow \mathbb{R}_{+}$be a payoff function with values

$$
v(S)=\left\{\begin{array}{ll}
0 & \text { if }|S| \leq 1 \\
60 & \text { if }|S|=2 \\
72 & \text { if }|S|=3
\end{array}\right\}
$$

Determine the excesses with respect to the full allocations $x=(30,30,12)^{T}$ and $x^{\prime}=$ $(24,24,24)^{T}$. Is $l(x)$ lexicographically smaller than $l\left(x^{\prime}\right)$? Determine the nucleolus of $\Gamma(N, v)$.

Solution: Note that $e(N, x)=e\left(N, x^{\prime}\right)=0$ since x and x^{\prime} are full allocations. For all proper coalitions $\emptyset \subset S \subset N$ we have

$$
\begin{gathered}
e(S, x)=v(S)-x(S)=\left\{\begin{array}{ll}
0-30 & \text { if } S \in\{\{1\},\{2\}\} \\
0-12 & \text { if } S=\{3\} \\
60-60 & \text { if } S=\{1,2\} \\
60-42 & \text { if } S \in\{\{1,3\},\{2,3\}\}
\end{array}\right\} \\
e\left(S, x^{\prime}\right)=v(S)-x^{\prime}(S)=\left\{\begin{array}{ll}
0-24 & \text { if }|S|=1 \\
60-48 & \text { if }|S|=2
\end{array}\right\}
\end{gathered}
$$

Thus,

$$
l\left(x^{\prime}\right)=\left(\begin{array}{c}
12 \\
12 \\
12 \\
-24 \\
-24 \\
-24
\end{array}\right) \prec l(x)=\left(\begin{array}{c}
18 \\
18 \\
0 \\
-12 \\
-30 \\
-30
\end{array}\right)
$$

It is not hard to see that x^{\prime} is the nucleolus: Note the the linear program (LP.0)

$$
\begin{array}{lll}
\min _{x \geq 0} & \varepsilon & \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=72 \\
& \varepsilon+x_{1}+x_{2} & \geq 60 \\
& \varepsilon+x_{2}+x_{3} \geq 60 \\
& \varepsilon+x_{1}+x_{3} & \geq 60 \\
& \varepsilon+x_{i} & \geq 0 \quad \forall i=1,2,3
\end{array}
$$

has the unique optimal solution $\varepsilon_{0}=12$, since summing up the three inequalities corresponding to two-element coalitions yields

$$
2\left(x_{1}+x_{2}+x_{3}\right)+3 \varepsilon \geq 180 \quad \text { implies } \quad \varepsilon \geq \frac{1}{3}(180-2 * 72)=12 .
$$

Thus, any optimal solution x of (LP.0) must satisfy

$$
x_{1}+x_{2}=x_{2}+x_{3}=x_{1}+x_{3}=60-\varepsilon_{0}=48,
$$

and therefore $x_{1}=x_{2}=x_{3}=12$. Hence, x^{\prime} is the nucleolus.
Exercise 4. Consider a parliament with three parties $\left\{P_{1}, P_{2}, P_{3}\right\}$, where the parties P_{1} and P_{2} own 10 seats each, while party P_{3} owns 19 seats. A majority of seats is necessary for a coalition to form the regime. How much power has each party? I.e., what is the Shapley value for the game in which each coalition has value 1 if it is able to form the regime, and zero otherwise?

Solution: Since the Shapley value is the average over all marginal vectors, we need to determine the marginal values x_{i}^{π} for each player P_{i} and each permution π of $\{1,2,3\}$. The marginal values for P_{1} are

π	x_{1}^{π}
123	$v(\{1\})-v(\emptyset)=0$
132	$v(\{1\})-v(\emptyset)=0$
213	$v(\{1,2\})-v(2)=1$
231	$v(\{1,2,3\})-v(2,3)=0$
312	$v(\{1,3\})-v(3)=1$
321	$v(\{1,2,3\})-v(2,3)=0$.

Thus, $\Phi_{1}(v)=\frac{2}{6}=\frac{1}{3}$. By symmetrie, it follows that $\Phi_{2}(v)=\frac{1}{3}$. Since the Shapley value is a full allocation, we have that

$$
\Phi_{3}(v)=v(N)-\Phi_{1}(v)-\Phi_{2}(v)=1-\frac{4}{6}=\frac{2}{6}=\frac{1}{3} .
$$

