ADM III: Linear and convex optimization in game theory, WS 2008/09 Technische Universität Berlin Institut für Mathematik Dr. Britta Peis, Dr. Tobias Harks

Assignment 3

— Solutions —

Exercise 1. Let $\Gamma = (N, v)$ be a cooperative payoff game with $v : 2^N \to \mathbb{R}_+$. If v is not superadditive, a coalition might achieve a better payoff if it splits into disjoint subsets. Thus, it makes sense to consider the extended game $\tilde{\Gamma} = (N, \tilde{v})$ with

$$\tilde{v}(S) = \max\{\sum_{i} v(S_i) \mid S_i \subseteq S \text{ and } S_i \cap S_j = \emptyset \text{ if } i \neq j\} \quad \forall S \subseteq N.$$

- a) Show that \tilde{v} is monotone increasing and superadditive.
- b) Show that if $v(N) = \tilde{v}(N)$, then $\operatorname{core}(v) = \operatorname{core}(\tilde{v})$.

Solution:

a) It follows by the definition that

$$S \subseteq T \implies \tilde{v}(S) \leq \tilde{v}(T)$$
 and
 $\tilde{v}(S) + \tilde{v}(T) \leq \tilde{v}(S \cup T) \quad \forall S, T \subseteq N \text{ with } S \cap T = \emptyset.$

b) $core(\tilde{v}) \subseteq core(v)$ follows since $v \leq \tilde{v}$. To show the other direction, suppose that $x \in core(v)$. Since $v \geq 0$ it follows that $x \geq 0$. Consider an arbitrary coalition $S \subseteq N$ and let $\tilde{v}(S) = v(S_1) + \ldots + v(S_k)$ for pairwise disjoint subsets S_1, \ldots, S_k of S. Then,

$$x(S_1 \cup \ldots \cup S_k) = \sum_{i=1}^k x(S_i) \ge \sum_{i=1}^k v(S_i) = \tilde{v}(S).$$

Thus, $x \in core(\tilde{v})$.

Exercise 2. Consider the game $\Gamma = (N, v)$ on three players $N = \{1, 2, 3\}$ whose payoff function is defined by $v(\{\}) = v(\{1\}) = v(\{2\}) = v(\{3\}) = 0, v(\{1,2\}) = v(\{2,3\}) = 1, v(\{1,3\}) = 2$ and $v(\{1,2,3\}) = 4$. Determine all marginal vectors and the core of Γ .

ADM III: Linear and convex optimization in game theory, Assignment 3

 \Diamond

Solution: We can calculate the marginal vectors greedily for each permution π via

$$x_{\pi_i}^{\pi} = v(\{\pi_1, \dots, \pi_i\}) - v(\{\pi_1, \dots, \pi_{i-1}\}) \quad \forall i = 1, 2, 3.$$

This way, we achieve the following marginal vectors:

π	x_1^{π}	x_2^{π}	x_3^{π}
123	0	1	4-1=3
132	0	2	4-2=2
213	1	0	3
231	3	0	1
312	2	2	0
321	3	1	0.
••	• •		1 1

Since v is supermodular, we have

$$core(v) = conv\{x^{\pi} \mid \pi \text{ permuation of } N\}.$$

 \diamond

Exercise 3. Let $N = \{1, 2, 3\}$ and $v : 2^N \to \mathbb{R}_+$ be a payoff function with values

$$v(S) = \left\{ \begin{array}{ll} 0 & \text{if } |S| \le 1\\ 60 & \text{if } |S| = 2\\ 72 & \text{if } |S| = 3. \end{array} \right\}$$

Determine the excesses with respect to the full allocations $x = (30, 30, 12)^T$ and $x' = (24, 24, 24)^T$. Is l(x) lexicographically smaller than l(x')? Determine the nucleolus of $\Gamma(N, \nu)$.

Solution: Note that e(N,x) = e(N,x') = 0 since x and x' are full allocations. For all proper coalitions $\emptyset \subset S \subset N$ we have

$$e(S,x) = v(S) - x(S) = \begin{cases} 0 - 30 & \text{if } S \in \{\{1\}, \{2\}\} \\ 0 - 12 & \text{if } S = \{3\} \\ 60 - 60 & \text{if } S = \{1,2\} \\ 60 - 42 & \text{if } S \in \{\{1,3\}, \{2,3\}\} \end{cases}$$

$$e(S,x') = v(S) - x'(S) = \begin{cases} 0 - 24 & \text{if } |S| = 1 \\ 60 - 48 & \text{if } |S| = 2 \end{cases}$$

$$l(x') = \begin{pmatrix} 12 \\ 12 \\ -24 \\ -24 \\ -24 \end{pmatrix} \prec l(x) = \begin{pmatrix} 18 \\ 18 \\ 0 \\ -12 \\ -30 \\ -30 \end{pmatrix}$$

Thus,

$$\begin{array}{rll} \min_{x\geq 0} & \varepsilon \\ s.t. & x_1 + x_2 + x_3 &= 72 \\ & \varepsilon + x_1 + x_2 &\geq 60 \\ & \varepsilon + x_2 + x_3 &\geq 60 \\ & \varepsilon + x_1 + x_3 &\geq 60 \\ & \varepsilon + x_i &\geq 0 \quad \forall i = 1, 2, 3 \end{array}$$

has the unique optimal solution $\varepsilon_0 = 12$, since summing up the three inequalities corresponding to two-element coalitions yields

$$2(x_1 + x_2 + x_3) + 3\varepsilon \ge 180$$
 implies $\varepsilon \ge \frac{1}{3}(180 - 2*72) = 12.$

Thus, any optimal solution x of (LP.0) must satisfy

$$x_1 + x_2 = x_2 + x_3 = x_1 + x_3 = 60 - \varepsilon_0 = 48,$$

and therefore $x_1 = x_2 = x_3 = 12$. Hence, x' is the nucleolus.

Exercise 4. Consider a parliament with three parties $\{P_1, P_2, P_3\}$, where the parties P_1 and P_2 own 10 seats each, while party P_3 owns 19 seats. A majority of seats is necessary for a coalition to form the regime. How much power has each party? I.e., what is the Shapley value for the game in which each coalition has value 1 if it is able to form the regime, and zero otherwise?

Solution: Since the Shapley value is the average over all marginal vectors, we need to determine the marginal values x_i^{π} for each player P_i and each permution π of $\{1,2,3\}$. The marginal values for P_1 are

 $\begin{array}{c|c|c} \pi & x_1^{\pi} \\ 123 & v(\{1\}) - v(\emptyset) = 0 \\ 132 & v(\{1\}) - v(\emptyset) = 0 \\ 213 & v(\{1,2\}) - v(2) = 1 \\ 231 & v(\{1,2,3\}) - v(2,3) = 0 \\ 312 & v(\{1,3\}) - v(3) = 1 \\ 321 & v(\{1,2,3\}) - v(2,3) = 0. \end{array}$

Thus, $\Phi_1(v) = \frac{2}{6} = \frac{1}{3}$. By symmetrie, it follows that $\Phi_2(v) = \frac{1}{3}$. Since the Shapley value is a full allocation, we have that

$$\Phi_3(v) = v(N) - \Phi_1(v) - \Phi_2(v) = 1 - \frac{4}{6} = \frac{2}{6} = \frac{1}{3}.$$

 \Diamond

 \diamond