TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK Dr. J. Behrndt, C. Kreusler

Analysis II

8.Übungsblatt

Abgabe vor den Tutorien am 16. / 17. Dezember Dies ist das erste Übungsblatt der zweiten Semesterhälfte.

Aufgabe 1: 6 Punkte

(i) Skizzieren Sie die Kurve

$$C = \{(x, y) \in \mathbb{R}^2 \mid \left(\frac{x}{a}\right)^2 - (y - \lambda) = 0, \ -2 \le x \le 1\},\$$

wobei a>0 und $\lambda\in\mathbb{R}$. Geben Sie eine möglichst einfache Parametrisierung an.

- (ii) Es sei $\gamma : \mathbb{R} \to \mathbb{R}^2$, $\gamma(t) := e^{-t}(\cos(t), \sin(t))$. Skizzieren Sie die durch γ parametrisierte Kurve im Bereich $-2\pi \le t \le 2\pi$. Für $[a, b] \subset \mathbb{R}$ sei $L_{[a,b]}$ die Länge der Kurve $\gamma|_{[a,b]}$. Berechnen Sie $L_{[a,b]}$. Existiert $\lim_{b\to\infty} L_{[0,b]}$?
- (iii) Ein Kreis vom Radius 1 rolle auf der x-Achse. Betrachte die Spur, die ein Punkt auf diesem Kreis beschreibt. Diese Kurve heißt Zykloide. Berechnen Sie ihre regulären Punkte und ihre Bogenlänge auf einem maximalen regulären Stück.
- (iv) Integrieren sie das Vektorfeld $v:\mathbb{R}^2\to\mathbb{R}^2,\,v(x,y)=(-y,x)$ entlang der durch

$$\phi: [a, b] \to \mathbb{R}^2, \quad \phi(t) := e^t \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

parametrisierten Kurve.

Aufgabe 2: 5 Punkte

(i) Es sei $c: \mathbb{R} \to \mathbb{R}^d$ regulär und es sei $t_0 \in \mathbb{R}$ mit

$$|c(t_0)| = \min_{t \in \mathbb{R}} |c(t)|.$$

Zeigen Sie, daß dann $c'(t_0)$ senkrecht steht auf $c(t_0)$.

(ii) Es sei $\gamma:[c,d]\to\mathbb{R}^d$ eine regulär und stetig differenzierbar. Zeigen Sie, daß es eine Parametertransformation $\phi:[a,b]\to[c,d]$ gibt, so daß die Kurve $\alpha=\gamma\circ\phi$ nach der Bogenlänge parametrisiert ist, das heißt, für alle $t\in[a,b]$ gilt $|\alpha'(t)|=1$.

Aufgabe 3: 4 Punkte

Zeigen Sie, daß $f:[0,1]\to\mathbb{R}^2$, definiert durch

$$f(t) := \begin{cases} (t, t \cos(\pi/t)), & \text{falls } 0 < t \le 1 \\ 0 & \text{sonst} \end{cases}$$

eine stetige Kurve ist, die nicht rektifizierbar ist.

Aufgabe 4: 5 Punkte

Eine Teilmenge $C \subset \mathbb{R}^d$ heißt (stetig differenzierbare) 1-dimensionale Untermannigfaltigkeit $von \mathbb{R}^d$, falls es für alle $p \in C$ eine offene Umgebung $U_p \subset \mathbb{R}^d$ von p gibt, eine offenes Intervall $I \subset \mathbb{R}$ und eine stetig differenzierbare, bijektive Funktion $\gamma: I \to U_p \cap C$, so daß $\gamma'(t)$ injektiv ist für alle $t \in I$. Die Abbildung γ ist dann eine (lokale) Parametrisierung von C.

Zeigen Sie, daß C genau dann eine 1-dimensionale Untermannigfaltigkeit von \mathbb{R}^d ist, falls es zu jedem Punkt $p \in C$ eine offene Umgebung $U_p \subset \mathbb{R}^d$ von p und eine stetig differenzierbare Abbildung $g: U_p \to \mathbb{R}^{d-1}$ gibt, so daß $C \cap U_p = g^{-1}(\{0\})$ gilt und g'(q) surjektiv ist für alle $q \in C \cap U_p$.