Tutorien am 10. / 11. Februar

Mit diesen Aufgaben kann man vor allem nochmals viele wichtige Rechentechniken üben, die in diesem Semester wichtig waren. In der Klausur wird es durchaus auch theoretischere Aufgaben geben.

Aufgabe 1:

Es sei $A \in \mathbb{R}^{n \times n}$ und $f : \mathbb{R}^n \to \mathbb{R}^n$ definiert durch $f(x) = Ax + x\psi(x)$, wobei $\psi : \mathbb{R}^n \to \mathbb{R}$ stetig sei mit $\psi(0) = 0$. Zeige, daß f im Punkt x = 0 differenzierbar ist und bestimme f'(0).

Aufgabe 2:

Bestimme die lokalen Extrema von $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = (y^2 - 1)\sin(x).$$

Aufgabe 3:

Es sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (ay,bx) gegeben, wobei $a,b \neq 0$. Bestimme alle Punkte, in denen f lokal invertierbar ist und gib jeweils die Ableitung der Umkehrfunktion an diesen Punkten an.

Aufgabe 4:

Es sei $v(x,y) = \frac{1}{x^2+y^2} \binom{y}{x}$ auf $\mathbb{R}^2 \setminus \{0\}$. Integriere v über die durch folgende Parametrisierungen gegebenen Kurven:

(a)
$$c_1:[0,1]\to\mathbb{R}^2$$
, $c_1(t)=(-\cos(2\pi t),\sin(2\pi t))$,

(b)
$$c_2: [0,1] \to \mathbb{R}^2$$
, $c_2(t) = (t(t-1), \cos(8\pi t^5) + 3)$,

Aufgabe 5:

Berechne die folgenden Integrale $\int_B f dx$ mit Hilfe geeigneter Koordinaten.

(a)
$$B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 16, x \ge 0, y \ge 0\}, \quad f(x,y) = \sqrt[4]{x^2 + y^2},$$

(b)
$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2, 0 \le z \le 1\}, \quad f(x, y, z) = ze^{x^2 + y^2} + z^2,$$

(c)
$$B = \{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + z^2 \le 4, 6 \le y \le 8\}, \quad f(x, y, z) = \sin(x^2 + z^2).$$

Aufgabe 6:

Ermittle das Volumen des Körpers, den der elliptische Zylinder

$$Z = \{(x, y, z) \in \mathbb{R}^3 : x^2/9 + y^2/4 \le 1/2\}$$

aus dem Ellipsoid

$$E = \{(x, y, z) \in \mathbb{R}^3 : x^2/9 + y^2/4 + z^2 \le 1\}$$

ausschneidet.

Aufgabe 7:

Berechne die Oberfläche der Wendelfläche W, die als Bild der Abbildung $p:[0,1]\times[0,2\pi]\to\mathbb{R}^3,\ p(r,\phi)=(r\cos\phi,r\sin\phi,\phi)$ gegeben ist.

Aufgabe 8:

Berechne mit Hilfe des Satzes von Gauß den Fluß des Vektorfeldes $v(x,y,z)=(2xy,z^2-y^2,x-z)$ durch die Oberfläche des Körpers

$$P = \{(x, y, z) \in \mathbb{R}^3 : 3\sqrt{x^2 + y^2} \le z \le 10 - x^2 - y^2\}.$$