TU BERLIN Institut für Mathematik Prof. David Williamson Jannik Matuschke

Problem Set 2

(due date: November 10, 2010)

Exercise 2.1

The k-suppliers problem is similar to the k-center problem given in class. The input to the problem is a positive integer k, and a set of vertices V, along with distances d_{ij} between any two vertices i, j that obey the same properties as in the k-center problem. However, now the vertices are partitioned into suppliers $F \subseteq V$ and customers D = V - F. The goal is to find k suppliers such that the maximum distance from a supplier to a customer is minimized. In other words, we wish to find $S \subseteq F$, $|S| \leq k$, that minimizes $\max_{i \in D} d(j, S)$. Give a 3-approximation algorithm for the k-suppliers problem.

Exercise 2.2

Show that for any input to the problem of minimizing the makespan on identical parallel machines for which the processing requirement of each job is more than one-third the optimal makespan, the longest processing time rule computes an optimal schedule.

Exercise 2.3

We consider scheduling jobs on identical machines as in class, but jobs are now subject to precedence constraints. We say $i \prec j$ if in any feasible schedule, job *i* must be completely processed before job *j* begins processing. A natural variant on the list scheduling algorithm is one in which whenever a machine becomes idle, then any remaining job that is available is assigned to start processing on that machine. A job *j* is available if all jobs *i* such that $i \prec j$ have already been completely processed. Show that this list scheduling algorithm is a 2-approximation algorithm for the problem with precedence constraints.

Exercise 2.4

In this problem, we consider a variant of the problem of scheduling on parallel machines so as to minimize the length of the schedule. Now each machine *i* has an associated speed s_i , and it takes p_j/s_i units of time to process job *j* on machine *i*. Assume that machines are numbered from 1 to *m* and ordered such that $s_1 \ge s_2 \ge \cdots \ge s_m$. We call these *related* machines.

(a) A ρ -relaxed decision procedure for an scheduling problem is an algorithm such that given an instance of the scheduling problem and a deadline D either produces a schedule of length at most $\rho \cdot D$ or correctly states that no schedule of length D is possible for the instance. Show that given a polynomial-time ρ -relaxed decision procedure for the problem of scheduling related machines, one can produce a ρ -approximation algorithm for the problem.

3 points

5 points

6 points

4 points

(b) Consider the following variant of the list scheduling algorithm, now for related machines. Given a deadline D, we label every job j with the slowest machine i such that the job could complete on that machine in time D; that is, $p_j/s_i \leq D$. If there is no such machine for a job j, it is clear that no schedule of length D is possible. If machine i becomes idle at a time D or later, it stops processing. If machine i becomes idle at a time before D, it takes the next job of label i that has not been processed, and starts processing it. If no job of label i is available, it looks for jobs of label i+1; if no jobs of label i+1 are available, it looks for jobs of label i+2, and so on. If no such jobs are available, it stops processing. If not all jobs are processed by this procedure, then the algorithm states that no schedule of length D is possible.

Prove that this algorithm is a polynomial-time 2-relaxed decision procedure.

Exercise 2.5

5 points

In the maximum coverage problem, we have a set of elements E, and m subsets of elements $S_1, \ldots, S_m \subseteq E$, each with a nonnegative weight $w_j \ge 0$. The goal is to choose k elements such that we maximize the weight of the subsets that are covered. We say that a subset is covered if we have chosen some element from it. Thus we want to find $S \subseteq E$ such that |S| = k and that we maximize the total weight of the subsets j such that $S \cap S_j \neq \emptyset$.

- (a) Give a $(1 \frac{1}{e})$ -approximation algorithm for this problem.
- (b) Show that if an approximation algorithm with performance guarantee better than $1 \frac{1}{e} + \epsilon$ exists for the maximum coverage problem for some constant $\epsilon > 0$, then every *NP*-complete problem has a $O(n^{O(\log \log n)})$ time algorithm (Hint: Recall the hardness theorems about the set cover problem.)