
TU Berlin Approximation Algorithms (ADM III)

Institut für Mathematik Winter term 2010

Prof. David Williamson

Jannik Matuschke

Problem Set 2
(due date: November 10, 2010)

Exercise 2.1 4 points
The k-suppliers problem is similar to the k-center problem given in class. The input
to the problem is a positive integer k, and a set of vertices V , along with distances dij
between any two vertices i, j that obey the same properties as in the k-center problem.
However, now the vertices are partitioned into suppliers F ⊆ V and customers D =
V −F . The goal is to find k suppliers such that the maximum distance from a supplier to
a customer is minimized. In other words, we wish to find S ⊆ F , |S| ≤ k, that minimizes
maxj∈D d(j, S). Give a 3-approximation algorithm for the k-suppliers problem.

Exercise 2.2 3 points
Show that for any input to the problem of minimizing the makespan on identical parallel
machines for which the processing requirement of each job is more than one-third the
optimal makespan, the longest processing time rule computes an optimal schedule.

Exercise 2.3 5 points
We consider scheduling jobs on identical machines as in class, but jobs are now subject
to precedence constraints. We say i ≺ j if in any feasible schedule, job i must be com-
pletely processed before job j begins processing. A natural variant on the list scheduling
algorithm is one in which whenever a machine becomes idle, then any remaining job
that is available is assigned to start processing on that machine. A job j is available if
all jobs i such that i ≺ j have already been completely processed. Show that this list
scheduling algorithm is a 2-approximation algorithm for the problem with precedence
constraints.

Exercise 2.4 6 points
In this problem, we consider a variant of the problem of scheduling on parallel machines
so as to minimize the length of the schedule. Now each machine i has an associated
speed si, and it takes pj/si units of time to process job j on machine i. Assume that
machines are numbered from 1 to m and ordered such that s1 ≥ s2 ≥ · · · ≥ sm. We call
these related machines.

(a) A ρ-relaxed decision procedure for an scheduling problem is an algorithm such that
given an instance of the scheduling problem and a deadline D either produces a
schedule of length at most ρ · D or correctly states that no schedule of length D
is possible for the instance. Show that given a polynomial-time ρ-relaxed decision
procedure for the problem of scheduling related machines, one can produce a ρ-
approximation algorithm for the problem.

(b) Consider the following variant of the list scheduling algorithm, now for related
machines. Given a deadline D, we label every job j with the slowest machine i
such that the job could complete on that machine in time D; that is, pj/si ≤ D.
If there is no such machine for a job j, it is clear that no schedule of length D is
possible. If machine i becomes idle at a time D or later, it stops processing. If
machine i becomes idle at a time before D, it takes the next job of label i that
has not been processed, and starts processing it. If no job of label i is available, it
looks for jobs of label i+1; if no jobs of label i+1 are available, it looks for jobs of
label i+ 2, and so on. If no such jobs are available, it stops processing. If not all
jobs are processed by this procedure, then the algorithm states that no schedule
of length D is possible.

Prove that this algorithm is a polynomial-time 2-relaxed decision procedure.

Exercise 2.5 5 points
In the maximum coverage problem, we have a set of elements E, and m subsets of
elements S1, . . . , Sm ⊆ E, each with a nonnegative weight wj ≥ 0. The goal is to choose
k elements such that we maximize the weight of the subsets that are covered. We say
that a subset is covered if we have chosen some element from it. Thus we want to find
S ⊆ E such that |S| = k and that we maximize the total weight of the subsets j such
that S ∩ Sj 6= ∅.

(a) Give a (1− 1
e)-approximation algorithm for this problem.

(b) Show that if an approximation algorithm with performance guarantee better than
1− 1

e + ε exists for the maximum coverage problem for some constant ε > 0, then

every NP -complete problem has a O(nO(log logn)) time algorithm (Hint: Recall the
hardness theorems about the set cover problem.)

