TU Berlin
Institut für Mathematik
Prof. David Williamson
Jannik Matuschke

Problem Set 3

(due date: November 24, 2010)

Exercise 3.1

5 points

In the minimum-cost Steiner tree problem, we are given as input a complete, undirected graph $G=(V, E)$ with nonnegative costs $c_{i j} \geq 0$ for all edges $(i, j) \in E$. The set of vertices is partitioned into terminals T and nonterminals (or Steiner vertices) $V-T$. The goal is to find a minimum-cost tree containing all terminals.
(a) Suppose initially that the edge costs obey the triangle inequality; that is, $c_{i j} \leq$ $c_{i k}+c_{k j}$ for all $i, j, k \in V$. Let $G[T]$ be the graph induced on the set of terminals; that is, $G[T]$ contains the vertices in T and all edges from G that have both endpoints in T. Consider computing a minimum spanning tree in $G[T]$. Show that this gives a 2-approximation algorithm for the minimum-cost Steiner tree problem.
(b) Now we suppose that edge costs do not obey the triangle inequality, and that the input graph G is connected but not necessarily complete. Let $c_{i j}^{\prime}$ be the cost of the shortest path from i to j in G using input edge costs c. Consider running the algorithm above in the complete graph G^{\prime} on V with edge costs c^{\prime} to obtain a tree T^{\prime}. To compute a tree T in the original graph G, for each edge $(i, j) \in T^{\prime}$, we add to T all edges in a shortest path from i to j in G using input edge costs c. Show that this is still a 2 -approximation algorithm for the minimum-cost Steiner tree problem on the original (incomplete) input graph $G . G^{\prime}$ is sometimes called the metric completion of G.

Exercise 3.2

5 points

In the edge-disjoint paths problem in directed graphs, we are given as input a directed graph $G=(V, A)$ and k source-sink pairs $s_{i}, t_{i} \in V$. The goal of the problem is to find edge-disjoint paths so that as many source-sink pairs as possible have a path from s_{i} to t_{i}. More formally, let $S \subseteq 1, \ldots, k$. We want to find S and paths P_{i} for all $i \in S$ such that $|S|$ is as large as possible and for any $i, j \in S, i \neq j, P_{i}$ and P_{j} are edge-disjoint $\left(P_{i} \cap P_{j}=\emptyset\right)$.
Consider the following greedy algorithm for the problem. Let ℓ be the maximum of \sqrt{m} and the diameter of the graph (where $m=|A|$ is the number of input arcs and the diameter is $\max _{i, j \in V} d_{i j}$ with $d_{i j}$ being the length of a shortest i - j-path). For i from 1 to k, we check to see if there exists a $s_{i}-t_{i}$ path of length at most ℓ in the graph. If there is such a path P_{i}, we add i to S and remove the arcs of P_{i} from the graph.
Show that this greedy algorithm is an $\Omega(1 / \ell)$-approximation algorithm for the edgedisjoint paths problem in directed graphs.

Suppose that an undirected graph G has a Hamiltonian path. Give a polynomial-time algorithm to find a path of length at least $\Omega(\log n /(\log \log n))$.

Exercise 3.4

5 points

Consider the following greedy algorithm for the knapsack problem. We initially sort all the items in order of nonincreasing ratio of value to size so that $v_{1} / s_{1} \geq v_{2} / s_{2} \geq$ $\cdots \geq v_{n} / s_{n}$. Let i^{*} be the index of an item of maximum value so that $v_{i^{*}}=\max _{i \in I} v_{i}$. The greedy algorithm puts items in the knapsack in index order until the next item no longer fits; that is, it finds k such that $\sum_{i=1}^{k} s_{i} \leq B$ but $\sum_{i=1}^{k+1} s_{i}>B$. The algorithm returns either $1, \ldots, k$ or i^{*}, whichever has greater value. Prove that this algorithm is a 1/2-approximation algorithm for the knapsack problem.

