Problem Set 4

(due date: December 8, 2010)

Exercise 4.1

4 points

In the maximum directed cut problem (sometimes called MAX DICUT) we are given as input a directed graph $G=(V, A)$. Each directed $\operatorname{arc}(i, j) \in A$ has nonnegative weight $w_{i j} \geq 0$. The goal is to partition V into two sets U and $W=V-U$ so as to maximize the total weight of the arcs going from U to W (that is, $\operatorname{arcs}(i, j)$ with $i \in U$ and $j \in W$). Give a randomized $\frac{1}{4}$-approximation algorithm for this problem.

Exercise 4.2

4 points
Consider the non-linear randomized rounding algorithm for MAX SAT as discussed in class. Prove that using randomized rounding with the linear function $f\left(y_{i}\right)=\frac{1}{2} y_{i}+\frac{1}{4}$ also gives a $\frac{3}{4}$-approximation algorithm for MAX SAT.

Exercise 4.3

Consider again the maximum directed cut problem from the exercise above.
(a) Show that the following integer program models the maximum directed cut problem:

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{(i, j) \in A} w_{i j} z_{i j} & \\
\text { subject to } & z_{i j} \leq x_{i}, & \forall(i, j) \in A, \\
z_{i j} \leq 1-x_{j}, & \forall(i, j) \in A, \\
x_{i} \in\{0,1\}, & \forall i \in V, \\
& 0 \leq z_{i j} \leq 1, & \forall(i, j) \in A .
\end{array}
$$

(b) Consider a randomized rounding algorithm for the maximum directed cut problem that solves a linear programming relaxation of the integer program and puts vertex $i \in U$ with probability $1 / 4+x_{i} / 2$. Show that this gives a randomized 1/2-approximation algorithm for the maximum directed cut problem.

Exercise 4.4

This exercise introduces a deterministic rounding technique called pipage rounding. To illustrate this technique, we will consider the problem of finding a maximum cut in a graph with a constraint on the size of each part. In the maximum cut problem, we are given as input an undirected graph $G=(V, E)$ with nonnegative weights $w_{i j} \geq 0$ for all $(i, j) \in E$. We wish to partition the vertex set into two parts U and $W=V-U$ so as to maximize the weight of the edges whose two endpoints are in different parts. We will also assume that we are given an integer $k \leq|V| / 2$, and we must find a partition such that $|U|=k$.
(a) Show that the following nonlinear integer program models the maximum cut problem with a constraint on the size of the parts:

$$
\begin{aligned}
& \text { maximize } \sum_{(i, j) \in E} w_{i j}\left(x_{i}+x_{j}-2 x_{i} x_{j}\right) \\
& \text { subject to } \\
& \qquad \sum_{i \in V} x_{i}=k, \\
& \quad x_{i} \in\{0,1\}, \quad \forall i \in V .
\end{aligned}
$$

(b) Show that the following linear program is a relaxation of the problem:

$$
\begin{array}{rlrl}
\operatorname{maximize} & \sum_{(i, j) \in E} w_{i j} z_{i j} & \\
\text { subject to } & z_{i j} \leq x_{i}+x_{j}, & & \forall(i, j) \in E, \\
z_{i j} & \leq 2-x_{i}-x_{j}, & & \forall(i, j) \in E, \\
\sum_{i \in V} x_{i} & =k, & & \\
0 \leq z_{i j} & \leq 1, & & \forall(i, j) \in E, \\
0 \leq x_{i} & \leq 1, & & \forall i \in V .
\end{array}
$$

(c) Let $F(x)=\sum_{(i, j) \in E} w_{i j}\left(x_{i}+x_{j}-2 x_{i} x_{j}\right)$ be the objective function from the nonlinear integer program. Show that for any (x, z) that is a feasible solution to the linear programming relaxation, $F(x) \geq \frac{1}{2} \sum_{(i, j) \in E} w_{i j} z_{i j}$.
(d) Argue that given a fractional solution x, for two fractional variables x_{i} and x_{j}, it is possible to increase one by $\epsilon>0$ and decrease the other by ϵ such that $F(x)$ does not decrease and one of the two variables becomes integer.
(e) Use the arguments above to devise a $\frac{1}{2}$-approximation algorithm for the maximum cut problem with a constraint on the size of the parts.

Dies Mathematicus am 1. Dezember 2010
http://www.math.tu-berlin.de/dies/

