Problem Set 7

(due date: February 9, 2011)

Remark: All exercises of this problem set deal with the properties of basic feasible solutions of certain linear programs. You can find a short definition of this term at the beginning of Chapter 11 in the book.

Exercise 7.1

5 points
Recall the LP relaxation we used for the survivable network design problem:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} \\
\text { subject to } & \sum_{e \in \delta(S)} x_{e} \geq f(S), \\
x_{e} \geq 0 & \forall S \subseteq V, \\
& e \in E
\end{aligned}
$$

We claimed, but did not prove, the following: For any basic feasible solution x to the linear program with f a weakly supermodular function, there is a collection \mathcal{L} of subsets of vertices with the following properties:
(1) For all $S \in \mathcal{L}, S$ is tight.
(2) The vectors $\chi_{\delta(S)}$ for $S \in \mathcal{L}$ are linearly independent.
(3) $|\mathcal{L}|=\left|\left\{e \in E: x_{e}>0\right\}\right|$.
(4) The collection \mathcal{L} is laminar.

First, prove the following. Given two tight sets A and B, one of the following two statements must hold:

- $A \cup B$ and $A \cap B$ are tight, and $\chi_{\delta(A)}+\chi_{\delta(B)}=\chi_{\delta(A \cap B)}+\chi_{\delta(A \cup B)}$; or
- $A-B$ and $B-A$ are tight, and $\chi_{\delta(A)}+\chi_{\delta(B)}=\chi_{\delta(A-B)}+\chi_{\delta(B-A)}$.

Then prove the theorem above. You may assume that any basic feasible solution fulfills the properties (1) to (3).

Exercise 7.2

Consider the following LP relaxation for the traveling salesman problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} \\
\text { subject to } & \sum_{e \in \delta(S)} x_{e} \geq 2, \\
& \forall S \subset V, S \neq \emptyset, \\
& 0 \leq x_{e} \leq 1,
\end{array} \forall e \in E .
$$

Show that for any basic feasible solution x to the linear program, there must exist some $e \in E$ such that $x_{e}=1$.

Exercise 7.3

5 points
The minimum k-edge-connected subgraph problem takes as input an undirected graph $G=(V, E)$ and a positive integer k. The goal is to find the smallest set of edges $F \subseteq E$ such that there are at least k edge-disjoint paths between each pair of vertices.
Consider the following linear programming relaxation of the problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{e \in E} x_{e} \\
\text { subject to } & \sum_{e \in \delta(S)} x_{e} \geq k, \\
& 0 \leq x_{e} \leq 1
\end{array} \quad e \in V,
$$

(a) Prove that the linear program is indeed a relaxation of the problem.
(b) Prove that the linear program can be solved in polynomial time.
(c) Suppose we obtain a basic optimal solution to the LP relaxation and round up every fractional variable to 1 . Prove that this gives a $\left(1+\frac{4}{k}\right)$-approximation algorithm for the problem.

