Problem Set 7

(due date: February 9, 2011)

Remark: All exercises of this problem set deal with the properties of *basic feasible solutions* of certain linear programs. You can find a short definition of this term at the beginning of Chapter 11 in the book.

Exercise 7.1 5 points

Recall the LP relaxation we used for the survivable network design problem:

minimize
$$\sum_{e \in E} c_e x_e$$

subject to $\sum_{e \in \delta(S)} x_e \ge f(S), \quad \forall S \subseteq V,$
 $x_e \ge 0 \quad e \in E.$

We claimed, but did not prove, the following: For any basic feasible solution x to the linear program with f a weakly supermodular function, there is a collection \mathcal{L} of subsets of vertices with the following properties:

- (1) For all $S \in \mathcal{L}$, S is tight.
- (2) The vectors $\chi_{\delta(S)}$ for $S \in \mathcal{L}$ are linearly independent.
- (3) $|\mathcal{L}| = |\{e \in E : x_e > 0\}|.$
- (4) The collection \mathcal{L} is laminar.

First, prove the following. Given two tight sets A and B, one of the following two statements must hold:

- $A \cup B$ and $A \cap B$ are tight, and $\chi_{\delta(A)} + \chi_{\delta(B)} = \chi_{\delta(A \cap B)} + \chi_{\delta(A \cup B)}$; or
- A B and B A are tight, and $\chi_{\delta(A)} + \chi_{\delta(B)} = \chi_{\delta(A-B)} + \chi_{\delta(B-A)}$.

Then prove the theorem above. You may assume that any basic feasible solution fulfills the properties (1) to (3).

Exercise 7.2 5 points

Consider the following LP relaxation for the traveling salesman problem:

minimize
$$\sum_{e \in E} c_e x_e$$
 subject to $\sum_{e \in \delta(S)} x_e \geq 2$, $\forall S \subset V, S \neq \emptyset$, $0 \leq x_e \leq 1$, $\forall e \in E$.

Show that for any basic feasible solution x to the linear program, there must exist some $e \in E$ such that $x_e = 1$.

Exercise 7.3 5 points

The minimum k-edge-connected subgraph problem takes as input an undirected graph G = (V, E) and a positive integer k. The goal is to find the smallest set of edges $F \subseteq E$ such that there are at least k edge-disjoint paths between each pair of vertices. Consider the following linear programming relaxation of the problem:

minimize
$$\sum_{e \in E} x_e$$
 subject to
$$\sum_{e \in \delta(S)} x_e \ge k, \quad \forall S \subseteq V,$$

$$0 \le x_e \le 1 \quad e \in E.$$

- (a) Prove that the linear program is indeed a relaxation of the problem.
- (b) Prove that the linear program can be solved in polynomial time.
- (c) Suppose we obtain a basic optimal solution to the LP relaxation and round up every fractional variable to 1. Prove that this gives a $(1 + \frac{4}{k})$ -approximation algorithm for the problem.