Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistent: Simon Wasserroth

hand out: Wed 21.10.2010 due: Wed 28.10.2010

Assignment 1 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

Let $\Omega = \{1, 2, 3, 4\}$ and $\Gamma = \{\emptyset, \Omega, \{1, 2\}, \{1, 3\}\}$. What is $\sigma(\Gamma)$? Find two probability measures μ, ν such that they do agree on Γ but not on $\sigma(\Gamma)$.

Problem 2

For all $n \in \mathbb{N}$, let the sets \mathcal{A}_n be σ -algebras generated by the sets $\mathcal{E}_n := \{\{1\}, \{2\}, \ldots, \{n\}\}$ in $\Omega := \mathbb{N}$.

- (i) Prove that \mathcal{A}_n consists of all sets $A \subseteq \mathbb{N}$ such that: Either $A \subset \{1, \ldots, n\}$ or $m \in A$ for all $m \ge n+1$.
- (ii) Show that $\bigcup_{n=1}^{\infty} \mathcal{A}_n$ is not a σ -algebra.

Problem 3

A distribution function $F : \mathbb{R} \to [0, 1]$ is a function that is non-decreasing, right continuous and satisfies $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.

Prove that the map $\mu \mapsto \mu((-\infty, x]) = F(x)$ is a bijection from the space of all probability measures on \mathbb{R} onto the set of all distribution functions.

Problem 4

For some algebra (or σ -algebra) \mathcal{A} a nonempty set A is called atom of \mathcal{A} if $A \in \mathcal{A}$ and for all $C \in \mathcal{A}$ either $A \subseteq C$ or $A \cap C = \emptyset$.

Let X be some set and A_1, \ldots, A_n subsets of X for $n \in \mathbb{N}$. Let \mathcal{A} be the smallest algebra containing all A_i for $1 \leq i \leq n$. Take \mathcal{I} to be the collection of all intersections $\bigcap_{i=1}^n B_i$ with $B_i = A_i$ or $B_i = A_i^c$. Show that $\mathcal{I} \setminus \{\emptyset\}$ is the set of all atoms.

Give an example for an algebra \mathcal{A} which is not generated by the set of all atoms.

Reminder: Hand in your solution in groups of at most three students.

5 Points

5 Points

5 Points

5 Points