Assignment 10 ,Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

Problem 1

5 Points
Let $\alpha>0, X_{0} \in \mathbb{R}$ be given and choose iid ϵ_{i} with zero mean and finite variance and continuous density. Define for $n \in \mathbb{N}_{0}$ the sequence $X_{n+1}=\alpha X_{n}+\epsilon_{n+1}$.
(i) Show that the (Markov-)process $\left(X_{n}\right)$ is strong Feller.
(ii) Find a necessary condition for α for the process $\left(X_{n}\right)$ to be stationary (if started in the stationary distribution).

Problem 2

6 Points
Let (Ω, \mathcal{F}) be a measurable space and $T: \Omega \rightarrow \Omega$ a measurable map. Let \mathcal{I} be the set of all invariant probability measures.
(i) Show that \mathcal{I} is a convex set.
(ii) Show that a probability measure $\mu \in \mathcal{I}$ is extremal iff μ is ergodic. A measure is called extremal if for $\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}$ with $\lambda \in[0,1], \mu_{1}, \mu_{2} \in \mathcal{I}$ and $\mu_{1} \neq \mu_{2}$ one gets $\lambda \in\{0,1\}$.

Hint: For the first implication take some non ergodic measure μ such that there exists A with $\mu(A)=\lambda$ and construct an explicit convex combination of it.
For the converse implication assume that μ is ergodic and could be combinated as $\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}$. Show that then also μ_{1} and μ_{2} must be ergodic and use the ergodic theorem.

Problem 3

5 Points
(i) Find a Markov process (in discrete time) that is not strong Feller.
(ii) Prove that every Markov chain on a finite state space has at least one ergodic stationary distribution.
(iii) Let \mathbb{X} be an irreducible Markov chain on a finite state space E started in the invariant distribution p. Show that if \mathbb{X} is periodic then p cannot be mixing. Extra: Show that if \mathbb{X} is aperiodic then p is mixing.

Problem 4

4 Points
Let \mathbb{P} be a measure on Ω, the path space of sequences $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$. Let F be a bounded real valued random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. Define $f=\mathbb{E}\left[F \mid \sigma\left(x_{0}\right)\right]$. Let K be a Markov kernel (and the associated linear operator) with $K: \mathbb{R} \times \mathcal{F} \rightarrow[0,1]$. T denotes the left shift on the path space. Show that then $K f=\mathbb{E}\left[F \circ T \mid \sigma\left(x_{0}\right)\right]$.

