Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistant: Simon Wasserroth hand out: Wed 05.01.2011 due: Wed 12.01.2011

Assignment 10 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

5 Points

Let $\alpha > 0, X_0 \in \mathbb{R}$ be given and choose iid ϵ_i with zero mean and finite variance and continuous density. Define for $n \in \mathbb{N}_0$ the sequence $X_{n+1} = \alpha X_n + \epsilon_{n+1}$.

- (i) Show that the (Markov-)process (X_n) is strong Feller.
- (ii) Find a necessary condition for α for the process (X_n) to be stationary (if started in the stationary distribution).

Problem 2

6 Points

Let (Ω, \mathcal{F}) be a measurable space and $T : \Omega \to \Omega$ a measurable map. Let \mathcal{I} be the set of all invariant probability measures.

- (i) Show that \mathcal{I} is a convex set.
- (ii) Show that a probability measure $\mu \in \mathcal{I}$ is extremal iff μ is ergodic. A measure is called extremal if for $\mu = \lambda \mu_1 + (1 \lambda)\mu_2$ with $\lambda \in [0, 1]$, $\mu_1, \mu_2 \in \mathcal{I}$ and $\mu_1 \neq \mu_2$ one gets $\lambda \in \{0, 1\}$.

Hint: For the first implication take some non ergodic measure μ such that there exists A with $\mu(A) = \lambda$ and construct an explicit convex combination of it.

For the converse implication assume that μ is ergodic and could be combinated as $\mu = \lambda \mu_1 + (1 - \lambda)\mu_2$. Show that then also μ_1 and μ_2 must be ergodic and use the ergodic theorem.

Problem 3

- (i) Find a Markov process (in discrete time) that is not strong Feller.
- (ii) Prove that every Markov chain on a finite state space has at least one ergodic stationary distribution.

5 Points

(iii) Let X be an irreducible Markov chain on a finite state space E started in the invariant distribution p. Show that if X is periodic then p cannot be mixing. **Extra:** Show that if X is aperiodic then p is mixing.

Problem 4

4 Points

Let \mathbb{P} be a measure on Ω , the path space of sequences $(x_0, x_1, x_2, ...)$. Let F be a bounded real valued random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. Define $f = \mathbb{E}[F | \sigma(x_0)]$. Let K be a Markov kernel (and the associated linear operator) with $K : \mathbb{R} \times \mathcal{F} \to [0, 1]$. T denotes the left shift on the path space. Show that then $Kf = \mathbb{E}[F \circ T | \sigma(x_0)]$.