Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistant: Simon Wasserroth

hand out: Wed 12.01.2011 due: Wed 19.01.2011

Assignment 11 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

5 Points

Problem 1

Let μ, ν be two probability measures on (Ω, \mathcal{F}) with $\mu \ll \nu$ and density $\frac{d\mu}{d\nu} = f : \Omega \to \mathbb{R}$. Let (\mathcal{F}_n) be a filtration and define μ_n, ν_n as the restriction of the measures to \mathcal{F}_n . Show that $\frac{d\mu_n}{d\nu_n} = \mathbb{E}_{\nu}[f|\mathcal{F}_n]$.

Problem 2

5 Points

Let (X_n) be a Markov chain on the state space $\{1, \ldots, N\}$ starting in $i \in \{1, \ldots, N\}$ with transition matrix $P \in \mathbb{R}^{N \times N}$. Assume that (X_n) is also a martingale (with respect to its own filtration). Show that then the states 1 and N must be absorbing, i.e. $P_{11} = P_{NN} = 1$.

Problem 3

5 Points

Let $(X_{n,i})_{n,i\in\mathbb{N}_0}$ be a family of independent \mathbb{N}_0 valued random variables with $\mathbb{P}(X_{n,i} = k) = p_k$ for all $k \in \mathbb{N}_0$ and $\mathbb{E}[X_{n,i}] = m$. Define the branching process (Y_n) by $Y_0 = 1$ and $Y_{n+1} = \sum_{i=1}^{Y_n} X_{n,i}$ for $n \in \mathbb{N}_0$ and $Z_n = \frac{1}{m^n} Y_n$.

- (i) Show that (Z_n) is a martingale (with respect to its own filtration).
- (ii) Assume m = 1 and $p_1 < 1$. Show that then Z_n converges to 0 almost surely but not in L^1 .

Problem 4

Let K be a Markov kernel on \mathbb{R} and (X_n) the induced Markov process (in discrete time) starting in $x \in \mathbb{R}$. Assume that $\mathbb{E}[|X_n|] < \infty$. Assume that the measurable and bounded function $f : \mathbb{R} \to \mathbb{R}$ is harmonic, i.e. Kf = f. Show that then $(f(X_n))_n$ is a martingale.

5 Points