Assignment 12
 ,Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

(i) Let σ, τ be two stopping times on the filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{n}\right), \mathbb{P}\right)$. Show that then:

$$
\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}=\mathcal{F}_{\sigma \wedge \tau}
$$

(ii) Let $\left(X_{n}\right)$ be an adapted process and τ an almost surely finite stopping time. Show that then X_{τ} is \mathcal{F}_{τ} measurable.

Problem 2
6 Points
Let $\left(X_{i}\right)$ be iid random variables with $\mathbb{P}\left(X_{1}=1\right)=p$ and $\mathbb{P}\left(X_{1}=-1\right)=1-p=q$ for some $p \in(0,1)$. Define the random walk $\left(M_{n}\right)$ with $M_{0}=0$ and $M_{n}=\sum_{i=1}^{n} X_{i}$. Determine the probability for $\tau_{a}<\tau_{b}$ with $a, b \in \mathbb{Z}, a<0<b$, and $\tau_{l}=\inf \left\{k \in \mathbb{N} \mid M_{k}=l\right\}$.
Show first that $Z_{n}=\left(\frac{q}{p}\right)^{M_{n}}$ is a martingale. Then define $\tau_{a, b}=\inf \left\{n \in \mathbb{N}_{0} \mid M_{n}=\right.$ a or $\left.M_{n}=b\right\}$ and apply then the optimal stopping theorem to the stopping time $\tau_{a, b} \wedge n$ and let $n \rightarrow \infty$. Observe that $\mathbb{P}\left(\tau_{a}<\tau_{b}\right)=\mathbb{P}\left(M_{\tau_{a, b}}=a\right)$.

Problem 3
5 Points
Let $\left(M_{n}\right)$ denote the simple random walk. Define $\tau_{a, b}=\inf \left\{n \in \mathbb{N}_{0} \mid M_{n}=a\right.$ or $\left.M_{n}=b\right\}$. Determine $\mathbb{E}\left[\tau_{a, b}\right]$ using the quadratic variation and optimal stopping.

Problem 4
4 Points
Define a Markov process $X=(R, B)$ on \mathbb{N}^{2} starting in $X_{0}=(1,1)$ with transition probabilities $\mathbb{P}\left(\left(R_{n+1}, B_{n+1}\right)=(r+1, b) \mid\left(R_{n}, B_{n}\right)=(r, b)\right)=\frac{r}{r+b}$ and $\mathbb{P}\left(\left(R_{n+1}, B_{n+1}\right)=\right.$ $\left.(r, b+1) \mid\left(R_{n}, B_{n}\right)=(r, b)\right)=\frac{b}{r+b}$ (all other transition probabilities are zero). It can be seen as an urn with one black and one red ball in the beginning, and then a ball is chosen at random and itself and another ball of the same colour is put back in the urn. Define $M_{n}=\frac{R_{n}}{B_{n}+R_{n}}$ the fraction of red balls, which is a martingale. Show that it converges and determine the distribution of the limit.
Determine - using combinatorics - the probability to have k red balls after n steps; identify that distribution and let $n \rightarrow \infty$.

