# Assignment 13 ,Wahrscheinlichkeitstheorie 2 - Stochastic processes 1" 

total points: 20 Points

## Problem 1

(i) Show that the limit of weak convergence of probability measures is unique.
(ii) Let $\mu, \mu_{1}, \mu_{2}, \ldots$ be probability measures on $(\mathbb{R}, \mathcal{B})$. Prove or find a counterexample: $\mu_{n}$ converges weakly to $\mu$ if for all compact $F \subseteq \mathbb{R} \lim \sup _{n \rightarrow \infty} \mu_{n}(F) \leq \mu(F)$.

## Problem 2

5 Points
Decide which of the given sequences $\left(\mu_{n}\right)$ of probability measures on $(\mathbb{R}, \mathcal{B})$ converges weakly to a probability measure and determine its limit (if exists).
(i) $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\frac{i}{n}}$, with $\delta$. being the Dirac distribution.
(ii) $\mu_{n}=\operatorname{Bin}\left(n, \frac{\lambda}{n}\right)$, for some $\lambda>0$. $\operatorname{Bin}(n, p)$ stands for the binomial distribution.
(iii) $\mu_{n}=\mathcal{U}([-n, n])$, where $\mathcal{U}([a, b])$ stands for the uniform distribution.

## Problem 3

5 Points
Let $\mu_{n}, \nu_{n}$ be sequences of probability measures on $(\mathbb{R}, \mathcal{B})$. Assume for all $n$ that $\nu_{n} \ll \mu_{n}$ with density $f_{n}$. Define on the product space $(\Omega, \mathcal{F})=\left(\mathbb{R}^{\mathbb{N}}, \mathcal{B}^{\otimes \mathbb{N}}\right)$ the measures $P=$ $\otimes_{n \in \mathbb{N}} \mu_{n}$ and $Q=\otimes_{n \in \mathbb{N}} \nu_{n}$. Define $a_{n}=\int_{\mathbb{R}} \sqrt{f_{n}} \mathrm{~d} \mu_{n}$.
Show that if $\prod_{i=1}^{\infty} a_{i}>0$ then $Q \ll P$ and that $\frac{\mathrm{d} Q}{\mathrm{~d} P}(\omega)=\lim _{n \rightarrow \infty} \prod_{i=1}^{n} f_{i}\left(\omega_{i}\right) P$-a.s. for $\omega \in \Omega$. Hint: Define $\xi_{n}=f_{n} \circ \pi_{n}$ where $\pi_{n}: \Omega \rightarrow \mathbb{R}$ is the projection on the $n$th coordinate.

Next, deduce a condition for the following example: Let $0<p, q<1$ and $\mu_{n} \sim \operatorname{Ber}(p)$ and $\nu_{n} \sim \operatorname{Ber}(q)$. Under which condition on $p$ and $q$ is $Q \ll P$ ? Extra: Let $p_{n} \in(0,1)$ and $\mu_{n} \sim \operatorname{Ber}\left(p_{n}\right), \nu_{n}$ as before. Under which condition is $Q \ll P$ ?

Problem 4

## 5 Points

Let $\left(X_{i}\right)$ be a sequence of independent random variables (on $\mathbb{R}$ ) with finite second moment and $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \operatorname{var}\left(X_{n}\right)<\infty$. Show (using the martingale convergence theorem) a strong law of large numbers for the $X_{i}$. Thus, show that $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right) \rightarrow 0$ a.s.

