Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistant: Simon Wasserroth hand out: Wed 02.02.2011 due: Wed 09.02.2011

Assignment 14 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

6 Points

- (i) Let (S, d) be a metric space and $A \subseteq S$. Show that $\{\delta_a : a \in A\}$ is tight iff A is relatively compact.
- (ii) Let f, f_1, f_2, \ldots : $[0, 1] \to \mathbb{R}$ be continuous functions. Show that $\delta_{f_n} \circ \pi_{t_1, \ldots, t_m}^{-1} \xrightarrow{w} \delta_f \circ \pi_{t_1, \ldots, t_m}^{-1}$ for all $m \in \mathbb{N}$ and $0 \le t_1 < t_2 < \ldots < t_m \le 1$ iff f_n converges pointwise to f.
- (iii) Find an example for f, f_n as above, such that the finite dimensional distributions of δ_{f_n} converges to the finite dimensional distributions of δ_f but $\{\delta_{f_n} : n \in \mathbb{N}\}$ is not tight.

Problem 2

Let $(X, \|\cdot\|)$ be an infinite dimensional Banach space. Show that the closed unit ball $B = \{x \in X : \|x\| \le 1\}$ is not compact. You might assume that X is even a Hilbert space with an inner product.

Problem 3

9 Points

5 Points

Program a path generator for paths of Brownian motion W_t , use any computer language you prefer (Java, C++, Matlab,...). Simulate a path and plot a graph. Then approximate the following quantities using Monte Carlo simulations, i.e. run a lot of simulations and average the value. $\mathbb{E}[W_1], \mathbb{E}[|W_1|], \mathbb{E}\left[W_{\frac{1}{2}}^2\right], \mathbb{E}\left[e^{W_1^2}\right]$. Comment on the values you get. Hand in the graph, the approximations and the well-documented source code.