Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistant: Simon Wasserroth

hand out: Wed 27.10.2010 due: Wed 03.11.2010

Assignment 2 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

Show that the integral for elementary functions is well defined. Take some elementary function $f: \Omega \to \mathbb{R}$ on the measure space $(\Omega, \mathcal{F}, \mu)$ with $f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i} = \sum_{i=1}^{m} \beta_i \mathbf{1}_{B_i}$ for some real numbers α_i, β_i and measurable sets A_i, B_i and show that its integral does not depend on the representation.

Problem 2

Prove the following for functions $f_n : \Omega \to \mathbb{R}$ on some measurable space (Ω, \mathcal{F}) and \mathbb{R} equipped with the Borel σ -algebra.

- (i) A set $A \subseteq \Omega$ is measurable iff the indicator function of the set is measurable.
- (ii) Let f_1 be some measurable function. Recall the definition of atoms from the first assignment. Prove that f_1 is constant on each atom of \mathcal{F} .
- (iii) Let f_1 and f_2 be measurable functions. Show $f_1 + f_2$ is measurable.
- (iv) Let all f_n be measurable. Show $\inf_{n \in \mathbb{N}} f_n$ and $\sup_{n \in \mathbb{N}} f_n$ are measurable.

Problem 3

For some measure space $(\Omega, \mathcal{F}, \mu)$ let $f_n : \Omega \to \mathbb{R}$ be a sequence of functions. Show that Fatou's Lemma remains true if we take $f_n \leq g$ with g a non negative integrable function, lim sup instead of lim inf and \geq instead of \leq . Thus it reads then: Let f_n be a sequence of measurable functions with $f_n \leq g$ for some integrable function g. Then $\int \limsup_{n \to \infty} f_n \mathrm{d}\mu \ge \limsup_{n \to \infty} \int f_n \mathrm{d}\mu.$

Find examples that it is not true if only one of the three statements is changed.

Problem 4

5 Points

Let $f: [0,1]^2 \to \mathbb{R}$ with $f(x,y) = \frac{1}{\sqrt{xy}}$. f takes the value infinity on both axis. Show that, still, Fubini's theorem holds, the order of integration does not matter. Why? Now take $g : \mathbb{R}^2 \to \mathbb{R}$ with $g(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ and check that Fubini's theorem does not apply and $\int_0^1 \int_0^1 g(x,y) dx dy \neq \int_0^1 \int_0^1 g(x,y) dy dx$. Why?

Reminder: Hand in your solution in groups of two students.

5 Points

5 Points

5 Points