Assignment 4
 ,Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1
5 Points
Let X and Y be random variables taking values in the interval $[a, b]$ with $\mathbb{E}\left[X^{n}\right]=$ $\mathbb{E}\left[Y^{n}\right]$ for all $n \in \mathbb{N}$. Thus, all the moments of X and Y agree. Show that X and Y are identically distributed. You can use that the characteristic function determines the distribution uniquely.

Problem 2

5 Points
Let $X_{n}: \Omega \rightarrow \mathbb{R}$ be a sequence of non negative integrable random variables that converges in probability to some integrable random variable $X: \Omega \rightarrow \mathbb{R}$. Furthermore $\mathbb{E}\left[X_{n}\right] \rightarrow$ $\mathbb{E}[X]$.
Show that then $X_{n} \rightarrow X$ in L_{1}, i.e. $\mathbb{E}\left[\left|X_{n}-X\right|\right] \rightarrow 0$.
Problem 3
5 Points
For the following problems find an example or prove that it is not possible. Let the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ be given.
(i) $X: \Omega \rightarrow \mathbb{R}$ is a finite random variable with infinite expectation.
(ii) $X: \Omega \rightarrow \overline{\mathbb{R}}$ has finite expectation but takes the value infinity on a set of positive measure.
(iii) A random variable has a finite first but infinite second moment.
(iv) A random variable has a finite second but infinite first moment.

Problem 4

5 Points
Let X_{n} be a sequence of random variables that are standard normally distributed. Assume that the X_{n} converge in L^{1} to some random variable X. Show that also X is standard normally distributed.

Reminder: Hand in your solution in groups of two students.

