Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistant: Simon Wasserroth hand out: Wed 17.11.2010 due: Wed 24.11.2010

Assignment 5 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

4 Points

4 Points

7 Points

Let $(X_n)_n$ be a sequence of random variables in \mathbb{R} which converges in probability to $x \in \mathbb{R}$. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a bounded function with $\phi(x) = 0$ that is in x continuous. Show that $\lim_{n\to\infty} \mathbb{E} [\phi(X_n)] = 0$. Does it also hold if we do not assume that ϕ is bounded?

Problem 2

Let X be a random variable in \mathbb{R} and $f : \mathbb{R} \to \mathbb{R}$ a measurable function. Show that X and $f \circ X$ are independent if and only if $f \circ X$ is constant almost surely.

Problem 3

Let $(X_n)_n$ be a sequence of random variables on \mathbb{R} defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Find out whether the following events are in the terminal σ -algebra defined as $\bigcap_{m=1}^{\infty} \sigma(\bigcup_{n=m}^{\infty} \sigma(X_n))$.

- (i) $\left\{\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n X_i \text{ exists}\right\}$
- (ii) $\{X_n = 0 \text{ for all } n \ge 10\}$
- (iii) {The series $\sum_{i=1}^{\infty} X_i$ converges}
- (iv) {The series $\sum_{i=1}^{\infty} X_i$ converges and the limit is greater that 1}
- (v) $\{\sum_{i=1}^{n} X_i = 1 \text{ infinitely often}\}$
- (vi) $\{\sum_{i=1}^{n} X_i = 0 \text{ for some } n\}$
- (vii) $\left\{\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n X_i=0\right\}$

Problem 4

5 Points

Let $(X_n)_n$ be iid random variables with $\mathbb{E}[X_1] = 0$ and $0 < \mathbb{E}[X_1^2] < \infty$. Let $S_n = \sum_{i=1}^n X_i$. Use Kolmogorovs 0-1 law to show that $\limsup_{n\to\infty} \frac{S_n}{\sqrt{n}} = \infty$ almost surely.

Reminder: Hand in your solution in groups of two students.