Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistant: Simon Wasserroth

hand out: Wed 24.11.2010 due: Wed 01.12.2010

Assignment 6 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

Let $X = (X_1, \ldots, X_n)$ be a random variable in \mathbb{R}^n . Show that the components X_1, \ldots, X_n are independent if and only if for the characteristic function holds $\mathbb{E}\left[e^{i(X,t)}\right] = \prod_{j=1}^n \mathbb{E}\left[e^{iX_jt_j}\right]$ for $t \in \mathbb{R}^n$. (\cdot, \cdot) denotes the Euclidean scalar product.

Problem 2

Let $\bar{\mathcal{B}}^{\otimes\mathbb{R}}$ be the sigma algebra on $\mathbb{\bar{R}}^{\mathbb{R}}$ which is generated by the projections $\pi_t : \mathbb{\bar{R}}^{\mathbb{R}} \to \mathbb{\bar{R}}, \pi_t(f) = f(t)$ such that $\bar{\mathcal{B}}^{\otimes\mathbb{R}} = \sigma(\pi_t^{-1}(\bar{\mathcal{B}}), t \in \mathbb{R})$. Show that $F(f) = \sup_{x \in \mathbb{R}} f(x)$ is not $\bar{\mathcal{B}}^{\otimes\mathbb{R}} - \bar{\mathcal{B}}$ measurable.

Problem 3

Let $N \in \mathbb{N}$ with N > 2. Define for $a, b, c \in I := \{1, \ldots, N\}$

$$p(a,b,c) := \begin{cases} 1 & : a = b = c \\ \frac{1}{N-2} & : a, b, c \text{ are pairwise different} \\ 0 & : \text{ else} \end{cases}$$

Define for $n \geq 2$ and $i_j \in I$ the map

$$K_n: ((i_1, \ldots, i_n), i_{n+1}) \mapsto p(i_{n-1}, i_n, i_{n+1})$$

a) Show that K_n can be seen as a Markov kernel. Write down the corresponding measure spaces.

b) Let Q_1 be the uniform distribution on I, $Q_2 := Q_1 \otimes Q_1$, and $Q_{n+1} := Q_n \otimes K_n$ for $n \geq 2$. By the theorem of Ionescu-Tulcea there is a stochastic process $(X_n)_{n \in \mathbb{N}}$ with finite dimensional distributions Q_n . Show

- (i) $(X_n)_{n \in \mathbb{N}}$ is not a Markov chain.
- (ii) $(X_n, X_{n+1})_{n \in \mathbb{N}}$ is a Markov chain on I^2 .

4 Points

7 Points

5 Points

Problem 4

Find out and prove if the following sets are in $\mathcal{B}(\mathbb{R})^{\otimes \mathbb{N}}$.

- (i) The set of all sequences converging to zero.
- (ii) The set of all converging sequences.

Reminder: Hand in your solution in groups of two students.

4 Points