Assignment 6 ,Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

Problem 1
total points: 20 Points

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random variable in \mathbb{R}^{n}. Show that the components X_{1}, \ldots, X_{n} are independent if and only if for the characteristic function holds $\mathbb{E}\left[e^{i(X, t)}\right]=\prod_{j=1}^{n} \mathbb{E}\left[e^{i X_{j} t_{j}}\right]$ for $t \in \mathbb{R}^{n} .(\cdot, \cdot)$ denotes the Euclidean scalar product.

Problem 2

4 Points
Let $\overline{\mathcal{B}}^{\otimes \mathbb{R}}$ be the sigma algebra on $\overline{\mathbb{R}}^{\mathbb{R}}$ which is generated by the projections $\pi_{t}: \overline{\mathbb{R}}^{\mathbb{R}} \rightarrow$ $\overline{\mathbb{R}}, \pi_{t}(f)=f(t)$ such that $\overline{\mathcal{B}}^{\otimes \mathbb{R}}=\sigma\left(\pi_{t}^{-1}(\overline{\mathcal{B}}), t \in \mathbb{R}\right)$. Show that $F(f)=\sup _{x \in \mathbb{R}} f(x)$ is not $\overline{\mathcal{B}}^{\otimes \mathbb{R}}-\overline{\mathcal{B}}$ measurable.

Problem 3

7 Points
Let $N \in \mathbb{N}$ with $N>2$. Define for $a, b, c \in I:=\{1, \ldots, N\}$

$$
p(a, b, c):= \begin{cases}1 & : a=b=c \\ \frac{1}{N-2} & : a, b, c \text { are pairwise different } \\ 0 & : \\ \text { else }\end{cases}
$$

Define for $n \geq 2$ and $i_{j} \in I$ the map

$$
K_{n}:\left(\left(i_{1}, \ldots, i_{n}\right), i_{n+1}\right) \mapsto p\left(i_{n-1}, i_{n}, i_{n+1}\right)
$$

a) Show that K_{n} can be seen as a Markov kernel. Write down the corresponding measure spaces.
b) Let Q_{1} be the uniform distribution on $I, Q_{2}:=Q_{1} \otimes Q_{1}$, and $Q_{n+1}:=Q_{n} \otimes K_{n}$ for $n \geq 2$. By the theorem of Ionescu-Tulcea there is a stochastic process $\left(X_{n}\right)_{n \in \mathbb{N}}$ with finite dimensional distributions Q_{n}. Show
(i) $\left(X_{n}\right)_{n \in \mathbb{N}}$ is not a Markov chain.
(ii) $\left(X_{n}, X_{n+1}\right)_{n \in \mathbb{N}}$ is a Markov chain on I^{2}.

Find out and prove if the following sets are in $\mathcal{B}(\mathbb{R})^{\otimes \mathbb{N}}$.
(i) The set of all sequences converging to zero.
(ii) The set of all converging sequences.

Reminder: Hand in your solution in groups of two students.

