hand out: Wed 01.12.2010 due: Wed 08.12.2010

Assignment 7 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1 5 Points Let X_1, X_2, \ldots, X_n be iid random variables with finite expectation. Show for all $n \in \mathbb{N}$

$$\mathbb{E}\left[X_1 \left| \sigma(S_n)\right] = \frac{S_n}{n} \mathbb{P} - \text{almost surely}$$

 $J_{n} := \sum_{i=1}^{n} \Lambda_{i}$

Problem 2

Let $\Omega = \{a, b, c\}$. Find a random variable X on Ω and sigma algebras \mathcal{F}_1 and \mathcal{F}_2 such that

 $\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{F}_{2}\right] \mid \mathcal{F}_{1}\right] \neq \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{F}_{1}\right] \mid \mathcal{F}_{2}\right]$

on a set of positive probability.

Problem 3

Let X_1, X_2 be independent and both $\exp(\lambda)$ -distributed. Show that

$$\mathbb{E} [X_1 \wedge X_2 | X_1] = \lambda^{-1} (1 - e^{-\lambda X_1}).$$

Problem 4

Let $Q_1 = \mathcal{N}(\mu, \Sigma^2)$ be the normal distribution \mathcal{N} with parameters (μ, Σ^2) , where $\Sigma^2 \in$ $\mathbb{R}^{d \times d}$ is a symmetric positive definit matrix. Define the Markov kernel $K : \mathbb{R}^{d} \times \mathcal{B}^{\otimes d} \to [0, 1]$ by $K(x, \cdot) = \mathcal{N}(Ax, \tilde{\Sigma}^2)$, where A is some $d \times d$ matrix and $\tilde{\Sigma}^2$ is a symmetric positive definit matrix. Now let $Q_2 = Q_1 \otimes K$. Calculate the distribution Q_2 explicitly. **Extra:** Determine the distribution of $Q_2 \pi_2^{-1} = Q_1 K$.

Reminder: Hand in your solution in groups of two students.

Define
$$S_n := \sum_{i=1}^n X_i$$
.

Technische Universität Berlin

Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel

Assistant: Simon Wasserroth

5 Points

5 Points

5 Points