Technische Universität Berlin Fakultät II – Institut f. Mathematik

Lecturer: Prof. Dr. J.-D. Deuschel Assistant: Simon Wasserroth

hand out: Wed 08.12.2010 due: Wed 15.12.2010

Assignment 8 "Wahrscheinlichkeitstheorie 2 - Stochastic processes 1"

total points: 20 Points

Problem 1

Let X, Y, Z be independent random variables that are standard normally distributed. Show that then

$$\frac{X + YZ}{\sqrt{1 + Z^2}}$$

is standard normally distributed. Use conditional expectation and the charakteristic function.

Problem 2

Let (X, Y) be an integrable random variable in \mathbb{R}^2 with continuous density $f(\cdot, \cdot)$. Show that

$$\mathbb{E}\left[X|Y\right] = \frac{\int_{-\infty}^{\infty} x f(x, Y) dx}{\int_{-\infty}^{\infty} f(x, Y) dx} \quad \text{almost surely.}$$

Now assume (X, Y) to be normally distributed with zero mean and covariance $\Sigma^2 =$ $\begin{pmatrix} \sigma^2 & \sigma^2 \rho \\ \sigma^2 \rho & \sigma^2 \end{pmatrix}$ with $\sigma^2 > 0$ and $\rho \in [-1, 1]$. Determine $\mathbb{E}[X|Y]$.

Problem 3

Let (X, Y) be uniformly distributed on $B = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}.$

- (i) Determine the distribution of Y given X = x.
- (ii) Determine the distribution of $\arctan(Y/X)$ given $\sqrt{X^2 + Y^2} = r$.

Problem 4

Let $\Gamma = (\gamma_{i,j})_{i,j \in \mathbb{N}}$ be an infinite symmetric matrix. Each upper left corner $\Gamma^{(n)} = (\gamma_{i,j})_{i,j < n}$ is positive definit.

- (i) Show that there is a stochastic process $\mathbb{X} = (X_k)_{k \in \mathbb{N}}$ such that (X_1, \ldots, X_n) is distributed normally with zero mean and covariance $\Gamma^{(n)}$.
- (ii) Show that X is stationary iff there exists a function $\phi : \mathbb{N} \to \mathbb{R}$ with $\gamma_{ij} = \phi(|i-j|)$ for all $i, j \in \mathbb{N}$.

Reminder: Hand in your solution in groups of two students.

5 Points

5 Points

5 Points

5 Points