Versicherungsmathematik: Übung 13

Wintersemester 2012/13

Ausgabe: 31. Januar 2012 Abgabe: 7. Februar 2012

Aufgabe 1 (5 Punkte)

Zeigen Sie, dass das Exponentialprinzip gegeben durch das Nullnutzenprinzip mit Nutzenfunktion $u(x)=\frac{1}{\beta}(1-e^{-\beta x})$ und Parameter $\beta>0$ ein Prämienprinzip ist. Zeigen Sie, dass es für $\beta\to 0$ gegen das Nettorisikoprinzip konvergiert. Zeigen Sie außerdem, dass das Standardabweichungsprinzip translationsinvariant und homogen, aber nicht additiv ist.

Aufgabe 2 (5 Punkte)

Es sei $\delta > 0$ und

$$\mathcal{X}' = \{X : \mathbb{E}(X^2) < \infty, \mathbb{P}\{X > \mathbb{E}(X) + \delta\sqrt{\mathbb{E}[((X - \mathbb{E}(X))_+)^2]}\} > 0\},$$

dabei bezeichnet $f_+ = \max(f, 0)$ den Positivteil der Funktion f. Auf \mathcal{X}' definieren wir das Semistandardabweichungsprinzip H gegeben durch

$$H(X) = \mathbb{E}(X) + \delta \sqrt{\mathbb{E}[((X - \mathbb{E}(X))_+)^2]}.$$

Zeigen Sie, dass es ein homogenes Prämienprinzip ist. Was ist der Vorteil dieses Prinzips gegenüber dem Standardabweichungsprinzip? Ist es additiv?

Aufgabe 3 (5 Punkte)

Bestimmen Sie zum Niveau $\lambda \in (0,1)$ jeweils den V@R und den AV@R für das Risiko X=-Z. Dabei gelte:

- 1. Z ist Pareto-verteilt mit Parameter $\alpha>1$ (also mit Verteilungsfunktion $F_Z(x)=1-x^{-\alpha}, x\geq 1$).
- 2. Z ist exponentialverteilt mit Parameter $\gamma > 0$.

Aufgabe 4 (5 Punkte)

Es seien X, Y zwei reelle Zufallvariablen mit Verteilungsfunktionen P_X, P_Y . Wir sagen, X dominiert Y stochastisch, $X \ge_{st} Y$, wenn für alle $t \in \mathbb{R}$ gilt, dass $P_X(t) \le P_Y(t)$.

- a) Zeigen Sie, dass \geq_{st} eine partielle Ordnung ist, also reflexiv, transitiv und antisymmetrisch ist. Ist \geq_{st} auch eine Totalordnung, gilt also für je zwei Zufallsvariablen X, Y entweder $X \geq_{st} Y$ oder $Y \geq_{st} X$?
- b) Zeigen Sie: Gilt $X \geq_{st} Y$, so gibt es einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ sowie darauf definierte Zufallsvariablen \tilde{X} und \tilde{Y} , die wie X bzw. Y verteilt sind und so dass

$$\mathbb{P}\left[\tilde{X} \ge \tilde{Y}\right] = 1.$$