TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK Prof. Dr. J. Behrndt, J. Rohleder

Funktionalanalysis II

7. Übungsblatt

(Spektralsatz für selbstadjungierte Operatoren)

Abgabe vor der Übung am 9./10. Dezember

Hausaufgaben

Aufgabe 1:

Es sei U ein unitärer Operator im Hilbertraum \mathcal{H} und $f:\sigma(U)\to\mathbb{C}$ messbar und beschränkt. Zeige, dass

$$||f(U)x||^2 = \int_{\mathbb{T}} |f|^2 d(Ex, x)$$

für alle $x \in \mathcal{H}$ wahr ist.

Aufgabe 2:

Es sei A ein selbstadjungierter Operator im Hilbertraum \mathbb{C}^n mit den paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_m, m \leq n$, und $P_j, j = 1, \ldots, m$, die Orthogonalprojektion auf die zugehörigen Eigenräume. Für jede Borelmenge $\mathcal{B} \subseteq \mathbb{R}$ definieren wir

$$E_{\mathcal{B}} := \sum_{\lambda_j \in \mathcal{B}} P_j.$$

Zeige, dass die Abbildung $\mathcal{B} \mapsto E_{\mathcal{B}}$ ein Spektralmaß ist und dass A die Darstellung

$$A = \int_{\mathbb{R}} \lambda dE = \sum_{j=1}^{m} \lambda_j P_j$$

hat. Finde Polynome p und q mit p(A) = 0 bzw. $q(A) = \arctan(e^A)$.

Aufgabe 3:

Es sei A ein selbstadjungierter Operator im Hilbertraum \mathcal{H} mit Spektralmaß $\Sigma(\mathbb{R}) \ni \mathcal{A} \mapsto E_{\mathcal{A}}$. Zeige: Ist $f \in B(\mathbb{R})$ eine beschränkte, messbare Funktion, so gilt

$$\left(\int_{\mathbb{R}} f dEx, y\right) = \int_{\mathbb{R}} f d(Ex, y) \quad \forall x, y \in \mathcal{H}.$$

Aufgabe 4:

Ein abgeschlossener Operator T im Hilbertraum \mathcal{H} heißt Fredholm-Operator, falls gelten:

- (a) dim ker $T < \infty$.
- (b) ran T ist abgeschlossen und $\dim(\mathcal{H}/\operatorname{ran} T) < \infty$.

Zeige die folgenden Aussagen:

- (i) Ist $T = T^*$ ein surjektiver Fredholm-Operator und $E : \Sigma(\mathbb{R}) \to \mathcal{L}(\mathcal{H})$ sein Spektralmaß, so existiert eine Umgebung \mathcal{O} von null, mit $E_{\mathcal{O}} = 0$. In diesem Fall existiert T^{-1} , ist aber i.A. kein Fredholm-Operator.
- (ii) Ist $T = T^*$ ein kompakter Fredholm-Operator, so ist $0 \in \sigma_n(T)$ oder dim $\mathcal{H} < \infty$.