TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Dr. Patrick Winkert André Uschmajew

5. Übungsblatt zur Vorlesung Funktionalanalysis 2

(Banachalgebren und Spektrum)

Aufgabe 1

Sei $X = \{\zeta \in \mathbb{C} \mid |\zeta| \leq 1\}$. Sei $A \subseteq C(X, \mathbb{C})$ die Teilmenge der im Inneren von X analytischen Funktionen. Zeigen Sie: mit der Supremumsnorm sowie dem Produkt

$$(x * y)(\zeta) = \zeta \int_0^1 x(\zeta - t\zeta)y(t\zeta) dt$$

wird A zu einer Banachalgebra ohne Einselement.

Aufgabe 2

Betrachten Sie die C^* -Algebra $A=C_0(\mathbb{R},\mathbb{C})$ der stetigen, im Unendlichen verschwindenden Funktionen $f\colon \mathbb{R} \to \mathbb{C}$ (versehen mit der Supremumsnorm, der punktweisen Multiplikation und Konjugation). Diese besitzt kein Einselement. Sei $\tilde{A}=A\oplus\mathbb{C}$ die Erweiterung zu einer C^* -Algebra mit Einselement (0,1) und Norm $\|L_{(f,\lambda)}\|$ (siehe Satz 7.1.7).

- (a) Sei $(B(\mathbb{R}, \mathbb{C}), \|\cdot\|_{\infty})$ die C^* -Algebra der beschränkten Funktionen. Zeigen Sie, dass die kanonische Einbettung $(f, \lambda) \mapsto f + \lambda$ von \tilde{A} in $B(\mathbb{R}, \mathbb{C})$ eine Isometrie ist. Auf diese Weise kann \tilde{A} mit der Unteralgebra A' von $B(\mathbb{R}, \mathbb{C})$ der stetigen, im Unendlichen gegen eine Konstante strebenden Funktionen identifiziert werden.
- (b) Bestimmen Sie die Einheitengruppe $G(A') \cong G(\tilde{A})$.
- (c) Geben Sie das Spektrum eines Elements $f \in A$ an.

Aufgabe 3

(a) Sei A eine Banachalgebra. Für alle $a, b \in A$ zeige man

$$\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}.$$

Sind etwa A, B Operatoren und A oder B kompakt, so haben AB und BA dieselben Nichtnulleigenwerte

(b) Sei A eine Banachalgebra mit Eins und B eine abgeschlossene Unteralgebra mit $\mathbf{1} \in B$. Zeigen Sie: für alle $b \in B$ gilt

$$\sigma_B(b) \supseteq \sigma_A(b)$$
.

Außerdem gehört jeder Randpunkt von $\sigma_B(b)$ zu $\sigma_A(b)$. Wenn also $\sigma_B(b)$ keinen inneren Punkt enthält, ist $\sigma_B(b) = \sigma_A(b)$.

Finden Sie ein Beispiel, wo nicht Gleichheit gilt?

Aufgabe 4

Es seien A eine Banachalgebra mit Einselement und U eine offene Teilmenge von $\mathbb C.$ Beweisen Sie, dass die Menge

$$\Omega = \{ a \in A \mid \sigma(a) \subset U \}$$

in A offen ist. Demnach hängt das Spektrum $\sigma(a)$ (etwa im Sinne der Hausdorffmetrik auf kompakten Mengen) stetig von a ab.