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� Modelling real-world problems �

Real World Mathematical World

Real-World Problem Mathematical Model

Solution Solution Algorithms

Representation

Implementation

Execution

Interpretation

Modelling

Solving
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� Models, Data and Instances �

Given n sequences of colours ci,j (1 ≤ i ≤ n, j ∈ N) find a

mapping f : N→ {0, . . . , n} such that

#{k | cf(k),j(k) 6= cf(k+1),j(k+1)} is minimized, where

j(k) :=






1 if k=1 or f(k′) 6=f(k) ∀k′<k

j(k′)+1 otherwise, where k′ is maximal with k′<k, f(k′)=f(k)
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Model

Data Sets

� A model is a mathematical formulation of the problem, independent of any concrete

data (as possible input)

� An instance is a mathematical model, together with one associated data set
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� Overview – mathematical optimization �

Mathematical optimization

objective to maximize/minimize — constraints to respect — solution: variable assignment

Mixed integer programming

linear objective

linear constraints

both continuous and integer variables

Linear programming

only continuous variables

Integer programming

only integer variables

Nonlinear optimization

non-linear objective allowed

non-linear constraints allowed

continuous and/or integer variables
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� Ingredients of a Mathematical Program �

S Sets of relevant elements

(for example: products, cities, machines, types of raw material, ...)
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� Ingredients of a Mathematical Program �

S Sets of relevant elements

(for example: products, cities, machines, types of raw material, ...)

P Parameters: Values specified for (combinations of) elements of the sets

(for example: profits for products, demand for products, distances between cities,

capacity of machines, prices of one unit of raw material, ...)

V Variables: Unknowns to be determined

(for example: number of items to produce, number of shops to open in a certain

city, decision to buy a certain machine or not, amount of raw material to use, ...)

C Constraints: Relationships that have to hold between variables and parameters

(for example: maximal number of items that can be produced by a machine,

minimal number of shops to open, budget for buying raw material, ...)

� Mathematical Program: Collection of constraints and variables together with an

Objective function to be maximized/minimized

············································



� Mathematical Programming: Model, Input & Output �

Mathematical program:

S P

maximize/minimize Objective function
V

subject to C

concrete

values for

S and P
concrete

values for

S and P

concrete

values for

S and P
concrete

values for

S and P
Model

Data Sets

� Input: One data set =̂ Values for sets and parameters.

� Output: Variable assignment such that the objective function value is

maximal/minimal and the constraints are respected
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� General recipe for setting up a mathematical program �

1. Identify variables

➡ Which decisions have to be made?

➡ In which numbers are they best represented?

V
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3. Identify objective function

➡ Which quantity has to be optimized, and in which direction: minimize or maximize?

➡ How can this quantity be written in terms of the variables and parameters?

Objective
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� General recipe for setting up a mathematical program �

1. Identify variables

➡ Which decisions have to be made?

➡ In which numbers are they best represented?

V

2. Identify sets and parameters

➡ Which objects influence the problem?

➡ Which values define these objects and are relevant?

S

P

3. Identify objective function

➡ Which quantity has to be optimized, and in which direction: minimize or maximize?

➡ How can this quantity be written in terms of the variables and parameters?

Objective

4. Identify constraints

➡ Which restrictions have to be taken into account?

➡ How can these restrictions be expressed in terms of variables and parameters?

C
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� The production planning example �

Fruit Bananas Pineapples

Revenue $10000 $20000

Land use 5a 3a

Time use 4h 7h

Water consumpt. 400l 400l

Available capacities and water resources:

• Land: 50a

• Working time: 70h

• Water supply: 4500l

� Question: How much of each fruit should be produced to maximize the profit?
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� The production planning example �

Fruit Bananas Pineapples

Revenue $10000 $20000

Land use 5a 3a

Time use 4h 7h

Water consumpt. 400l 400l

Available capacities and water resources:

• Land: 50a

• Working time: 70h

• Water supply: 4500l

� Question: How much of each fruit should be produced to maximize the profit?

➡ Modelled as a linear program:

maximize (total revenue) 10xb + 20xp

subject to (total land usage) 5xb + 3xp ≤ 50

(total working time) 4xb + 7xp ≤ 70

(total water consumption) 4xb + 4xp ≤ 45

(non-negativity) xb, xp ≥ 0

Objective

C

V
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� Feasible, infeasible and optimal solutions �

xb xp revenue total land use total working time total water cons.

feasible 5 6 170 43 62 44

feasible 4 7 180 41 65 44

infeasible 2 9 200 37 71 44

optimal 0 10 200 30 70 40

available: 50 70 45

maximize (total revenue) 10xb + 20xp

subject to (total land usage) 5xb + 3xp ≤ 50

(total working time) 4xb + 7xp ≤ 70

(total water consumption) 4xb + 4xp ≤ 45

(non-negativity) xb, xp ≥ 0

············································



� Solving geometrically �
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feasible region
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xb1 2 3 4 5 6 7 8 9 10 11 12 13
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xp ≥ 0

xb ≥ 0

total water
cons.

total
land

usage

total working time

infeasible solution

feasible solution

feasible region

maximize 10
x
b +

20
x
p

maximal revenue: 200

optimal solution
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� Simplex Algorithm – executive summary �

� Geometric solving only works for at most 2 (maybe 3) variables
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� Geometric solving only works for at most 2 (maybe 3) variables

� More generally: Simplex Algorithm

� Idea: Jump from vertex to vertex in the direction of the objective vector until an

optimal vertex is reached

� More precisely:

• Search for some vertex (basic feasible solution)

• If there is a neighbouring vertex with a better objective...

• ...jump to this vertex and repeat

• Otherwise: stop – an optimal solution is reached!
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� Simplex Algorithm – executive summary �

� Geometric solving only works for at most 2 (maybe 3) variables

� More generally: Simplex Algorithm

� Idea: Jump from vertex to vertex in the direction of the objective vector until an

optimal vertex is reached

� More precisely:

• Search for some vertex (basic feasible solution)

• If there is a neighbouring vertex with a better objective...

• ...jump to this vertex and repeat

• Otherwise: stop – an optimal solution is reached!

� Special cases:

• No starting vertex can be found ➡ Problem is infeasible

• No neighbouring vertex in some objective-increasing direction ➡ Problem is unbounded

············································



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

➡ theoretically fast (polynomial), but practically useless

� Interior Point Methods

➡ Barrier Method (Karmarkar, 1984)

➡ theoretically and practically fast

➡ used for large-scale LPs

············································



� Sensitivity analysis �

The shadow price of a constraint is the rate of change in the objective function per unit

increase of the constraint’s right-hand side
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The shadow price of a constraint is the rate of change in the objective function per unit

increase of the constraint’s right-hand side
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� Shadow prices for non-binding constraints are always 0

� Shadow price for a constraint is only valid if the RHS is in a certain range
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� Integer Linear Programming Models �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

infeasible

➡ Variables can only take
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� Integer Linear Programming Models �

1 2 3 4 5 6 7 8 9 10 11 12 13
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infeasible

➡ Variables can only take

integer values

➡ Integer Linear Programming

Models

➡ Feasible “region” is a set of

isolated lattice points
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� (Mixed) Integer Programming models �

maximize/minimize

n∑

j=1

cjxj Objective function

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m C

ℓj ≤ xj ≤ uj for all j = 1, . . . , n V

LP-

relaxation





xj integer for all j = 1, . . . , n➡ Integer Program

(ℓ < n)xj integer for all j = 1, . . . , ℓ➡ Mixed Integer Program

xj ∈ {0, 1} for all j = 1, . . . , ℓ➡ Binary variables:

············································



� Binary constraints – examples �

� Trigger a yes/no-decision if some quantity reaches some value V

➡ binary variable y ∈ {0, 1}, meaning: y = 1 ⇔ “yes”

➡ (...linear expression for quantity...) ≤ V +M · y (M : large number)
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� Trigger a yes/no-decision if some quantity reaches some value V

➡ binary variable y ∈ {0, 1}, meaning: y = 1 ⇔ “yes”

➡ (...linear expression for quantity...) ≤ V +M · y (M : large number)

� Logical constraints: if decision A is taken, then also decision B has to be taken

➡ binary variables yA, yB ∈ {0, 1}, meaning: y∗ = 1 ⇔ “yes” for decision ∗

➡ yA ≤ yB

� Set packing constraints:

➡ choose at most/at least/exactly one of the binary variables y1, . . . , yn

➡ y1 + y2 + . . .+ yn ≤ 1 / ≥ 1 / = 1
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� Binary constraints – examples �

� Trigger a yes/no-decision if some quantity reaches some value V

➡ binary variable y ∈ {0, 1}, meaning: y = 1 ⇔ “yes”

➡ (...linear expression for quantity...) ≤ V +M · y (M : large number)

� Logical constraints: if decision A is taken, then also decision B has to be taken

➡ binary variables yA, yB ∈ {0, 1}, meaning: y∗ = 1 ⇔ “yes” for decision ∗

➡ yA ≤ yB

� Set packing constraints:

➡ choose at most/at least/exactly one of the binary variables y1, . . . , yn

➡ y1 + y2 + . . .+ yn ≤ 1 / ≥ 1 / = 1

� Lots of other types...
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� Branch-and-bound �

� Start by solving the LP relaxation
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� Start by solving the LP relaxation

� If the LP-optimum is not integer: split the problem into two subproblems and iterate
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� Branch-and-bound �

� Start by solving the LP relaxation

� If the LP-optimum is not integer: split the problem into two subproblems and iterate

➡ Branch-and-bound tree (example for maximization problem):

154.167

152.5

150 148.75

152.5

151.43

150 135

infeas

xc ≤ 8

xb ≤ 3 xb ≥ 4

xc ≥ 9

xb ≤ 1

xc ≥ 10 xc ≤ 9

xb ≥ 2

root node LP relaxation

primal objective

dual bound
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� Gap �

� The (absolute) gap during branch and bound: gap := bestdual − bestprimal

time

m
a
xi
m
iz
e
→

↓ −∞ ↓

primal objective

↑ ∞ ↑

dual bound

optimum
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� The (absolute) gap during branch and bound: gap := bestdual − bestprimal

time

m
a
xi
m
iz
e
→

↓ −∞ ↓

primal objective

↑ ∞ ↑

dual bound

optimum

� Stop traversing the tree, if the gap is 0, i.e. the value of the best primal solution and

the dual bound coincide
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� Gap �

� The (absolute) gap during branch and bound: gap := bestdual − bestprimal

time

m
a
xi
m
iz
e
→

↓ −∞ ↓

primal objective

↑ ∞ ↑

dual bound

optimum

� Stop traversing the tree, if the gap is 0, i.e. the value of the best primal solution and

the dual bound coincide

� In practise (and for large-scale MIPs): stop traversing the tree already if the

relative gap
gap

| bestdual | is below a certain target (e.g. 5%, 1%, 0.5%, ...)
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� What is combinatorial optimization? �

� Combinatorial optimization problems:

• Finite, but huge number of feasible solutions

➡ Complete enumeration is not an option
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� Problems can often be solved with integer programming models

� Usually, other methods are more efficient:

• Specially designed algorithms, approximation algorithms

• Primal/dual methods, combining IP with heuristics
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� What is combinatorial optimization? �

� Combinatorial optimization problems:

• Finite, but huge number of feasible solutions

➡ Complete enumeration is not an option

� Problems can often be solved with integer programming models

� Usually, other methods are more efficient:

• Specially designed algorithms, approximation algorithms

• Primal/dual methods, combining IP with heuristics

� Examples:

• Travelling Salesman Problem (TSP)

• Minimum Spanning Tree (MST)

• Shortest Path Problem (SPP)

• Network Flow, Knapsack Problem, Bin Packing, Stable Set Problem, ...

············································



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.
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� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.
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� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

60
→

←
65

100 → ← 100

50
→ ←

60

30 →

← 30

45
→

←
45

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

(asymmetric TSP)

············································



� TSP – overview �

� Combinatorial explosion:

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

············································



� TSP – overview �

� Combinatorial explosion:

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

� TSP can be formulated as a binary integer program

➡ Exponentially many (subtour elimination) constraints

➡ Dual method to provide upper bounds for the solution
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� TSP – overview �

� Combinatorial explosion:

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

� TSP can be formulated as a binary integer program

➡ Exponentially many (subtour elimination) constraints

➡ Dual method to provide upper bounds for the solution

� Approximation algorithms and heuristics

➡ Graph algorithms

➡ Primal methods to find (good) feasible solutions

············································



� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1
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65

55

2
5
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� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1
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6
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30

...find a minimum spanning tree for G
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� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

60

100

50

30

45

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree (connected and no cycles)

• all vertices of G are in the tree

• the total weight of the tree edges is minimal
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� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

60

100

50

30

45

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree (connected and no cycles)

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6
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100

50

30

45

65

55

2
5
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30

➡ total weight: 290
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� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4
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6

60

100

50

30

45

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree (connected and no cycles)

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1
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5
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➡ total weight: 290
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➡ total weight: 260

············································



� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1
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100
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45

65

55
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30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree (connected and no cycles)

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2
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4

5

6

60

100

50

30

45

65

55

2
5
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30

➡ total weight: 290
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➡ total weight: 260
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➡ not allowed: not a tree!

············································



� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...
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55
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30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree (connected and no cycles)

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1
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➡ total weight: 290
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➡ total weight: 260
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➡ not allowed: not a tree!
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� Minimum Spanning Tree Problem �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1
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55
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30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree (connected and no cycles)

• all vertices of G are in the tree

• the total weight of the tree edges is minimal
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➡ total weight: 290
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➡ total weight: 260
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➡ not allowed: not a tree!
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➡ not allowed: misses vertices!
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➡ total weight: 195
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� Kruskal’s algorithm �

� Idea: at every step select the next cheap edge, as long as it doesn’t result in a cycle
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� Kruskal’s algorithm �

� Idea: at every step select the next cheap edge, as long as it doesn’t result in a cycle
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➡ Greedy algorithm
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� Kruskal’s algorithm �

� Idea: at every step select the next cheap edge, as long as it doesn’t result in a cycle
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➡ Greedy algorithm

➡ Polynomial runtime

➡ efficient algorithm
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� Kruskal’s algorithm �

� Idea: at every step select the next cheap edge, as long as it doesn’t result in a cycle

1

2

3

4

5

6

60

100

50

30

45

65

55

2
5

20

30

➡ Greedy algorithm

➡ Polynomial runtime

➡ efficient algorithm

➡ Yields an optimal solution for every input graph (proof!)

➡ exact algorithm

············································



� Shortest Path Problem �

� Given a network – i.e. a directed graph – with a length for each arc, a start node A

and a destination B...

v1

v2

v3

v4

v5

v6 v7

v8

v9

110

162

126

134

141

122

102

157

107

111

145

115

A

B
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� Shortest Path Problem �

� Given a network – i.e. a directed graph – with a length for each arc, a start node A

and a destination B...

v1

v2

v3

v4

v5

v6 v7

v8

v9

110

162

126

134

141

122

102

157

107

111

145

115

A

B

� ...compute a shortest path through the network from A to B

v1

v2

v3

v4

v5

v6 v7

v8

v9

110

162

126

134

141

122

102

157

107

111

145

115

A

B

············································



� Shortest Path Problem – Dijkstra’s algorithm �

� Computes a complete shortest path tree from start node A to all other nodes

Edsger Wybe Dijkstra

(1930–2002)

············································



� Shortest Path Problem – Dijkstra’s algorithm �

� Computes a complete shortest path tree from start node A to all other nodes

Edsger Wybe Dijkstra

(1930–2002)

v1

110

A

0
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244

v5
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v6
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v7
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107
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145
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� Shortest Path Problem – Dijkstra’s algorithm �

� Computes a complete shortest path tree from start node A to all other nodes

Edsger Wybe Dijkstra

(1930–2002)

v1

110

A

0
v3

162

v4

244

v5

288

v6

232

v7

343

v8

346

v9

453

110

162

126

134

141

122

102

157

107

111

145

115

� Polynomial runtime ➡ efficient algorithm

� Always yields an optimal solution ➡ exact algorithm

············································



� Runtimes �

n

exp

n2

2n

6n
n!

input size n

ru
n
ti
m
e

linear — polynomial — exponential

············································



� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

············································



� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be

proved that it always (i.e. for every input!) returns a solution with best possible objective).
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� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be

proved that it always (i.e. for every input!) returns a solution with best possible objective).

efficient not efficient

exact Dijkstra’s algorithm Simplex algorithm (?)

Kruskal’s algorithm Branch & bound

Ellipsoid method Complete enumeration

not exact TSP heuristic using MST

approximation algorithms

············································



� Overview �

� Models, Data and Instances

� Linear Optimization

➡ Modelling as a linear program

➡ Solving a linear program (graphically, and in princple by the simplex algorithm)

➡ Sensitivity analysis

� (Mixed) Integer Programming

➡ Modelling as a (mixed) integer program

➡ How to solve a (mixed) integer program (in principle)

� Combinatorial Optimization

➡ Exemplary problems, algorithms, and runtimes

� Nonlinear Optimization

➡ Local and global optima, convex optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

············································



� Nonlinear optimization model �

� Model (non-linear program):

maximize 10xb + 150
√
xp − 20xp

subject to 5xb + 3xp ≤ 50 (total land usage)

4xb + 7xp ≤ 70 (total working time)

4xb + 4xp ≤ 45 (total water consumption)

xb, xp ≥ 0 (non-negativity)

Objective

C

V

············································



� Nonlinear optimization model �

� Model (non-linear program):

maximize 10xb + 150
√
xp − 20xp

subject to 5xb + 3xp ≤ 50 (total land usage)

4xb + 7xp ≤ 70 (total working time)

4xb + 4xp ≤ 45 (total water consumption)

xb, xp ≥ 0 (non-negativity)

Objective

C

V

� Examples of non-linear terms:

• Products of variables: xi · xj
• Squares of variables: x2i

}
quadratic expressions

• Higher-order terms of variables: xi · xj · xk, x5j · xj
• Absolute values or maxima/minima: |xi|, maxxj

• Terms including elementary functions: sinxi, 2xi·xj , 1√
xi
, log(xi + x

xk

j )

············································



� Non-linear objective �

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11

x2 ≥ 0

x1 ≥ 0

optimal solution

············································



� Non-linear constraints �

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11

x2 ≥ 0

x1 ≥ 0

············································



� Why are linear models good and non-linear models evil? �

� Linear models

• Linear objective

➡ Level sets are straight lines

(in higher dimension: hyperplanes)

• Linear constraints

➡ Feasible region is a polygon

(in higher dimension: polyhedron)

42

37

30
25

20

➡ Optimal solutions can always be

found in vertices

� Non-linear models

• Non-linear objective

➡ Level sets can be complicated curves

• Non-linear constraints

➡ Feasible region can be complicated
➡ Finding optimal solution can be difficult

············································



� Local and global optima �

� Example:

max
√
(x− 4)2 + (y − 4)2

s.t. x ≥ 2

x ≤ 5

−x+ y ≤ 2

x+ y ≤ 10

x− 3y ≤ −4

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

············································



� Local and global optima �

� Example:

max
√
(x− 4)2 + (y − 4)2

s.t. x ≥ 2

x ≤ 5

−x+ y ≤ 2

x+ y ≤ 10

x− 3y ≤ −4

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

local optimum

global optimum

➡ (4,6) is a local (but not a global) optimum

➡ (2,2) is a (local and) global optimum
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� Local and global optima �

� Example:

max
√
(x− 4)2 + (y − 4)2

s.t. x ≥ 2

x ≤ 5

−x+ y ≤ 2

x+ y ≤ 10

x− 3y ≤ −4

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

local optimum

global optimum

➡ (4,6) is a local (but not a global) optimum

➡ (2,2) is a (local and) global optimum

A feasible solution is called locally optimal if there is no nearby feasible solution with a

better objective function value

A feasible solution is called globally optimal if there is no feasible solution at all with a

better objective function value

············································



� Solving non-linear models – executive summary �

� Usual strategy of solvers for non-linear models:

• Find a point somewhere in the feasible region

• Follow steps to find a local optimum

············································
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• Find a point somewhere in the feasible region

• Follow steps to find a local optimum

� Problem: usually, the solution is not a global optimum!
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� Solving non-linear models – executive summary �

� Usual strategy of solvers for non-linear models:

• Find a point somewhere in the feasible region

• Follow steps to find a local optimum

� Problem: usually, the solution is not a global optimum!

� In special cases, this works nonetheless:

• If a concave function is maximized over a convex feasible set

• If a convex function is minimized over a convex feasible set

• If the problem is linear
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� Solving non-linear models – executive summary �

� Usual strategy of solvers for non-linear models:

• Find a point somewhere in the feasible region

• Follow steps to find a local optimum

� Problem: usually, the solution is not a global optimum!

� In special cases, this works nonetheless:

• If a concave function is maximized over a convex feasible set

• If a convex function is minimized over a convex feasible set

• If the problem is linear

� Possibilities otherwise:

• Reformulate or approximate as a linear model

• Rely on heuristic strategies and luck...

············································



� Mountain climbing �

� Non-linear optimization is like mountain-climbing in the fog

············································



� Mountain climbing �

� Non-linear optimization is like mountain-climbing in the fog

� How do you know that you’re on the highest mountain if you can’t see the other peaks?

············································



� Overview �

� Models, Data and Instances

� Linear Optimization

➡ Modelling as a linear program

➡ Solving a linear program (graphically, and in princple by the simplex algorithm)

➡ Sensitivity analysis

� (Mixed) Integer Programming

➡ Modelling as a (mixed) integer program

➡ How to solve a (mixed) integer program (in principle)

� Combinatorial Optimization

➡ Exemplary problems, algorithms, and runtimes

� Nonlinear Optimization

➡ Local and global optima, convex optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

············································



� General principle �

� Jobs:
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� General principle �

� Jobs:

� Schedule (Gantt chart):

Machine

time

➡ optimal with respect to an objective to specify!

············································



� Basic terminology �

� Jobs usually have: a processing time pj

job j

pjInput ➡

············································



� Basic terminology �

� Jobs usually have: a processing time pj

job j

pjInput ➡

� A schedule has to provide: a start time sj , such that different jobs do not overlap

time0

job k

pk

sj skOutput ➡
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� Jobs usually have: a processing time pj

job j

pjInput ➡

� A schedule has to provide: a start time sj , such that different jobs do not overlap

time0

job k

pk

sj skOutput ➡

➡ Completion time Cj := sj + pj

Cj Ck
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� Basic terminology �

� Jobs usually have: a processing time pj

job j

pjInput ➡

� A schedule has to provide: a start time sj , such that different jobs do not overlap

time0

job k

pk

sj skOutput ➡

➡ Completion time Cj := sj + pj

Cj Ck

� Possible objective functions:

(to minimize)

➡ Sum of completion times
n∑

j=1

Cj

➡ Makespan max
j=1,...,n

Cj

············································



� Scheduling – executive summary I �

� Single Machine, minimize sum of completion times

➡ easy (greedy algorithm)

Machine
6 10 12 14 14 15 16 20 22

0 6 16 28 42 56 71 87 107 129

············································



� Scheduling – executive summary I �

� Single Machine, minimize sum of completion times

➡ easy (greedy algorithm)

Machine
6 10 12 14 14 15 16 20 22

0 6 16 28 42 56 71 87 107 129

� Single Machine, minimize makespan

➡ trivial (always the same)

Machine
16 10 6 22 12 14 15 20 14

0 129
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� Scheduling – executive summary I �

� Single Machine, minimize sum of completion times

➡ easy (greedy algorithm)

Machine
6 10 12 14 14 15 16 20 22

0 6 16 28 42 56 71 87 107 129

� Single Machine, minimize makespan

➡ trivial (always the same)

Machine
16 10 6 22 12 14 15 20 14

0 129

� Single Machine, jobs with release dates, minimize sum of completion times

➡ similarly easy (greedy algorithm)

············································



� Scheduling – executive summary II �

� Jobs with precedence constraints (project scheduling)

• Single machine ➡ easy (greedy)

• Multiple machines ➡ hard

• Unlimited number of machines ➡ easy again (critical path method)

············································



� Scheduling – executive summary II �

� Jobs with precedence constraints (project scheduling)

• Single machine ➡ easy (greedy)

• Multiple machines ➡ hard

• Unlimited number of machines ➡ easy again (critical path method)

� Multiple machines, minimize sum of completion times

➡ easy (greedy)

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22
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� Scheduling – executive summary II �

� Jobs with precedence constraints (project scheduling)

• Single machine ➡ easy (greedy)

• Multiple machines ➡ hard

• Unlimited number of machines ➡ easy again (critical path method)

� Multiple machines, minimize sum of completion times

➡ easy (greedy)

Machine A

Machine B

Machine C
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16

20

22

� Multiple machines, minimize makespan

➡ hard (partitioning problem)

············································



� Overview �

� Models, Data and Instances

� Linear Optimization

➡ Modelling as a linear program

➡ Solving a linear program (graphically, and in princple by the simplex algorithm)

➡ Sensitivity analysis

� (Mixed) Integer Programming

➡ Modelling as a (mixed) integer program

➡ How to solve a (mixed) integer program (in principle)

� Combinatorial Optimization

➡ Exemplary problems, algorithms, and runtimes

� Nonlinear Optimization

➡ Local and global optima, convex optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

············································



� Lot Sizing – summary - model �

Data:

dt Demand in period t

ft fixed (start-up) costs in period t

ct unit production costs in period t

ht unit holding costs in period t

Ct available capacity in period t

Variables:

xt production in period t

yt installation of capacity in

period t

st inventory at the end of

period t

min
∑

t

ctxt + ftyt + htst

st−1 + xt = dt + st t = 1, . . . , n

xt ≤ Ctyt t = 1, . . . , n

xt, st ≥ 0 t = 1, . . . , n

s0 = 0

yt ∈ {0, 1} t = 1, . . . , n

·············································



� Lot Sizing – summary - observations �

• NP-hard problem

• poly-solvable cases:

⊲ Wagner-Whitin: Ct = ∞ for all periods t. In practice, Ct = M with M very large value.

⊲ constant capacity: Ct = C for all periods t.

⊲ Discrete lot sizing: constant capacity Ct = C and xt = Ctyt for all periods t

⊲ capacity in each period an integer multiple of constant batch size: Ct = Cyt with yt ∈ Z+

for all periods t.

··············································



� Overview �

� Models, Data and Instances

� Linear Optimization

➡ Modelling as a linear program

➡ Solving a linear program (graphically, and in princple by the simplex algorithm)

➡ Sensitivity analysis

� (Mixed) Integer Programming

➡ Modelling as a (mixed) integer program

➡ How to solve a (mixed) integer program (in principle)

� Combinatorial Optimization

➡ Exemplary problems, algorithms, and runtimes

� Nonlinear Optimization

➡ Local and global optima, convex optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

···············································



� Multicriteria Optimization – summary - I �

Multicriteria MIP model

max
n∑

j=1

c1jxj ,

n∑

j=1

c2jxj , . . . ,

n∑

j=1

c
q
jxj

s.t.
n∑

j=1

aijxj ≤ bi i = 1, . . . ,m

ℓj ≤ xj ≤ uj j = 1, . . . , n

xj ∈ Z+ j = 1, . . . , k

················································



� Multicriteria Optimization – summary - I �

Multicriteria MIP model

max
n∑

j=1

c1jxj ,

n∑

j=1

c2jxj , . . . ,

n∑

j=1

c
q
jxj

s.t.
n∑

j=1

aijxj ≤ bi i = 1, . . . ,m

ℓj ≤ xj ≤ uj j = 1, . . . , n

xj ∈ Z+ j = 1, . . . , k

Ideas:

• find efficient (non-dominated) solutions (A solution is efficient or non-dominated if no

objective value can be improved without reducing the other objective values)

• combine objective functions to weighted linear combination

• maximize one objective subject to bounds on all other objectives

• goal programming: solver get’s numerical requirements c̃j that have to be achieved as much

as possible

················································



� Exam �

Oral Exam takes place on Wed, 15 Feb, 10:15 a.m. - 1:45 p.m.

in PTZ 307

Good luck!

·················································


