Mathematical Tools
for Engineering and Management

Revision

08 Feb 2012

P PEILLT
SRR

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< Modelling real-world problems >

Real World

Represent

Modelling

Interpretation

Executi

< Models, Data and Instances >

1T S
2 [1O |

Given n sequences of colours ¢; ; (1 <4 < n, j € N) find a
mapping f : N — {0, ..., n} such that
#{k | cf(k),j(k) ;ﬁ cf(k+1),](k+l)} is minimized, where

i(k) =
1 if k=1or f(k')£f(k) VK' <k
(k)41 otherwise, where k’ is maximal with k/ <k, f(k/)=f (k)

Model

Data Sets

> A model is a mathematical formulation of the problem, independent of any concrete
data (as possible input)

> An Instance is a mathematical model, together with one associated data set

ZZ[][33

< Overview — mathematical optimization >

Mathematical optimization

objective to maximize/minimize — constraints to respect — solution: variable assignment

< Ingredients of a Mathematical Program >

E Sets of relevant elements

(for example: products, cities, machines, types of raw material, ...)

ZZ[][33

< Ingredients of a Mathematical Program >

Sets of relevant elements

(for example: products, cities, machines, types of raw material, ...)

1 [

Parameters: Values specified for (combinations of) elements of the sets
(for example: profits for products, demand for products, distances between cities,

capacity of machines, prices of one unit of raw material, ...)

ZZ[][33

< Ingredients of a Mathematical Program >

(for example: products, cities, machines, types of raw material, ...)

E Sets of relevant elements
E Parameters: Values specified for (combinations of) elements of the sets

(for example: profits for products, demand for products, distances between cities,

capacity of machines, prices of one unit of raw material, ...)

Variables: Unknowns to be determined

(for example: number of items to produce, number of shops to open in a certain

city, decision to buy a certain machine or not, amount of raw material to use, ...)

ZZ[][33

< Ingredients of a Mathematical Program >

Sets of relevant elements

(for example: products, cities, machines, types of raw material, ...)
E Parameters: Values specified for (combinations of) elements of the sets

(for example: profits for products, demand for products, distances between cities,

capacity of machines, prices of one unit of raw material, ...)

Variables: Unknowns to be determined

(for example: number of items to produce, number of shops to open in a certain

city, decision to buy a certain machine or not, amount of raw material to use, ...)

Constraints: Relationships that have to hold between variables and parameters
(for example: maximal number of items that can be produced by a machine,

minimal number of shops to open, budget for buying raw material, ...)

ZZ[][33

< Ingredients of a Mathematical Program >

(for example: products, cities, machines, types of raw material, ...)

E Sets of relevant elements
E Parameters: Values specified for (combinations of) elements of the sets

(for example: profits for products, demand for products, distances between cities,

capacity of machines, prices of one unit of raw material, ...)

: Unknowns to be determined
(for example: number of items to produce, number of shops to open in a certain

city, decision to buy a certain machine or not, amount of raw material to use, ...)

Constraints: Relationships that have to hold between variables and parameters
(for example: maximal number of items that can be produced by a machine,

minimal number of shops to open, budget for buying raw material, ...)

> Mathematical Program: Collection of constraints and variables together with an

Objective function to be maximized/minimized

ZZ[][33

< Mathematical Programming: Model, Input & Output >

concrete
values for concrete
I\/slatherlr;atical program: S|and values for
Sland |P
maximize/minimize Objective function
subject to | C
concrete
values for
S|and | P
concrete
values for
Model Sland |P
Data Sets
> Input: One data set = Values for sets and parameters.
> Qutput: assignment such that the objective function value is

maximal /minimal and the constraints are respected

ZZ[][33

< General recipe for setting up a mathematical program >

1. Identify variables

[1 Which decisions have to be made?

I In which numbers are they best represented?

ZZ[][33

< General recipe for setting up a mathematical program >

1. Identify variables

[1 Which decisions have to be made?

I In which numbers are they best represented?
2. ldentify sets and parameters E
[0 Which objects influence the problem? E

[0 Which values define these objects and are relevant?

ZZ[][33

< General recipe for setting up a mathematical program >

1. Identify variables

[1 Which decisions have to be made?

I In which numbers are they best represented?
2. ldentify sets and parameters E
[0 Which objects influence the problem?
[0 Which values define these objects and are relevant? E
3. ldentify objective function Objective
[0 Which quantity has to be optimized, and in which direction: minimize or maximize?

[How can this quantity be written in terms of the variables and parameters?

ZZ[][33

General recipe for setting up a mathematical program

. ldentify variables

[1 Which decisions have to be made?
I In which numbers are they best represented?
. ldentify sets and parameters E
[1 Which objects influence the problem?
[0 Which values define these objects and are relevant? E
. ldentify objective function Objective
[0 Which quantity has to be optimized, and in which direction: minimize or maximize?
[How can this quantity be written in terms of the variables and parameters?
. ldentify constraints
[0 Which restrictions have to be taken into account?

[How can these restrictions be expressed in terms of variables and parameters?

ZZ[][33

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< The production planning example >

Fruit Bananas Pineapples .
Available capacities and water resources:
Revenue $10000 $20000
e Land: 50a
Land use 5a 3a
Time use ah oh e Working time: 70h
Water consumpt. 400| 400 o Water supply: 4500

> Question: How much of each fruit should be produced to maximize the profit?

SOPRFIIZ

< The production planning example >

Fruit Bananas Pineapples .
Available capacities and water resources:
Revenue $10000 $20000
e Land: 50a
Land use 5a 3a
Time use ah oh e Working time: 70h
Water consumpt. 400| 400 o Water supply: 4500

> Question: How much of each fruit should be produced to maximize the profit?

[1 Modelled as a linear program:

ZZ[][33

< The production planning example >

Fruit Bananas Pineapples .
Available capacities and water resources:
Revenue $10000 $20000
e Land: 50a
Land use 5a 3a
Time use ah oh e Working time: 70h
Water consumpt. 400| 400 o Water supply: 4500

> Question: How much of each fruit should be produced to maximize the profit?

[1 Modelled as a linear program:

maximize (total revenue) 10z, + 20z, Objective
subject to (total land usage) brp + 3z, < 50
(total working time) dry, + Tz, < 70
(total water consumption) dry +4x, < 45
(non-negativity) Th,Tp > 0

ZZ[][33

< Feasible, infeasible and optimal solutions >

x, Tp | revenue | total land use total working time total water cons.

feasible 5 6 170 43 62 44
feasible 4 7 180 41 65 44
infeasible 2 9 200 37 71 44
loptimal| | 0 10 200 30 70 40
available: 50 70 45

maximize (total revenue) 10z, + 20z,

subject to (total land usage) brp + 3z, < 50

(total working time) dry, +Tzy < 70

(total water consumption) dary +4x, < 45
(non-negativity) Th,xp > 0

ZZ[][33

< Solving geometrically >

¥

13 Lb

< Solving geometrically >

Lp A
N
11 - (5%//

%
. . . 9
infeasible solution\ %

¥

AN
11 12 13 Lb

< Solving geometrically >

Lp A
N
11 - (5%//

%
. . . 9
infeasible solution\ %

< Solving geometrically >

< Simplex Algorithm — executive summary >

> Geometric solving only works for at most 2 (maybe 3) variables

ZZ[][33

< Simplex Algorithm — executive summary >

> Geometric solving only works for at most 2 (maybe 3) variables
> More generally: Simplex Algorithm

> ldea: Jump from vertex to vertex in the direction of the objective vector until an
optimal vertex is reached

ZZ[][33

< Simplex Algorithm — executive summary >

> Geometric solving only works for at most 2 (maybe 3) variables
> More generally: Simplex Algorithm

> ldea: Jump from vertex to vertex in the direction of the objective vector until an

optimal vertex is reached
> More precisely:
e Search for some vertex (basic feasible solution)
e If there is a neighbouring vertex with a better objective...
o ...jump to this vertex and repeat

e Otherwise: stop — an optimal solution is reached!

ZZ[][33

< Simplex Algorithm — executive summary >

> Geometric solving only works for at most 2 (maybe 3) variables
> More generally: Simplex Algorithm

> ldea: Jump from vertex to vertex in the direction of the objective vector until an

optimal vertex is reached

> More precisely:
e Search for some vertex (basic feasible solution)
e If there is a neighbouring vertex with a better objective...
o ...jump to this vertex and repeat
e Otherwise: stop — an optimal solution is reached!
> Special cases:
e No starting vertex can be found [I Problem is infeasible

e No neighbouring vertex in some objective-increasing direction [1 Problem is unbounded

ZZ[][33

< LP algorithm zoo >

> Simplex Algorithm

[1 developed by George B. Dantzig in 1947
[1 Variants:

e Dual Simplex Algorithm

e Network Simplex

> Ellipsoid Method
[J developed by L.G. Khachiyan in 1979

[J theoretically fast (polynomial), but practically useless

George Bernard Dantzig
(1914-2005)

> Interior Point Methods

[1 | Barrier Method (Karmarkar, 1984)

[theoretically and practically fast

[J used for large-scale LPs

Leonid Genrikhovich Khachiyan
o 0z 04 . 06 08 1 (1952_2005)

ZZ[][33

< Sensitivity analysis >

8
o

— =
o =

= RN W ke OO 0,0

< Sensitivity analysis >

> Shadow prices for non-binding constraints are always 0

8
o

— =
o =

= RN W ke OO 0,0

< Sensitivity analysis >

> Shadow prices for non-binding constraints are always 0

> Shadow price for a constraint is only valid if the RHS is in a certain range

Lp
11

— 8
— o

10° 10°
9 9
8 8
7 7
6 6
5 5
4 4
3 3
2 2

AN

12345678 910111213 Tp

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< Integer Linear Programming Models >

1 [1 Variables can only take

integer values

¥

13

< Integer Linear Programming Models >

1 [1 Variables can only take

integer values

10

¥

13

< Integer Linear Programming Models >

1 [1 Variables can only take

integer values

[J Feasible “region” is a set of

10

isolated lattice points

¥

13

< (Mixed) Integer Programming models >

n
maximize/minimize E CiT; Objective function
j=1

n
subject to Zaijxj < b foralle=1,....,m
j=1
\ nginS’UJj foralljzl,...,n

D I nteger Program

y

N\

D Mixed Integer Program

[1 Binary variables:

< Binary constraints — examples >

> Trigger a yes/no-decision if some quantity reaches some value V
[1 binary variable y € {0,1}, meaning: y =1 < "yes”

[0 (...linear expression for quantity...) < V+ M -y (M: large number)

ZZ[][33

< Binary constraints — examples >

> Trigger a yes/no-decision if some quantity reaches some value V
[1 binary variable y € {0,1}, meaning: y =1 < "yes”

[0 (...linear expression for quantity...) < V+ M -y (M: large number)

> Logical constraints: if decision A is taken, then also decision B has to be taken
[J binary variables ya,yg € {0,1}, meaning: y, = 1 < "yes” for decision

O ya < yB

ZZ[][33

Binary constraints — examples

Trigger a yes/no-decision if some quantity reaches some value V
[1 binary variable y € {0,1}, meaning: y =1 < "yes”

[0 (...linear expression for quantity...) < V+ M -y (M: large number)

Logical constraints: if decision A is taken, then also decision B has to be taken
[J binary variables ya,yg € {0,1}, meaning: y, = 1 < "yes” for decision

O ya < yB

Set packing constraints:
[choose at most/at least/exactly one of the binary variables y1, ..., y,

ZZ[][33

Binary constraints — examples

Trigger a yes/no-decision if some quantity reaches some value V
[1 binary variable y € {0,1}, meaning: y =1 < "yes”

[0 (...linear expression for quantity...) < V+ M -y (M: large number)

Logical constraints: if decision A is taken, then also decision B has to be taken

[J binary variables ya,yg € {0,1}, meaning: y, = 1 < "yes” for decision

O ya < yB

Set packing constraints:

[choose at most/at least/exactly one of the binary variables y1, ..., y,

Lots of other types...

ZZ[][33

< Branch-and-bound >

> Start by solving the | LP relaxation

ZZ[][33

< Branch-and-bound >

> Start by solving the | LP relaxation

> If the LP-optimum is not integer: split the problem into two subproblems and iterate

ZZ[][33

< Branch-and-bound >

> Start by solving the | LP relaxation
> If the LP-optimum is not integer: split the problem into two subproblems and iterate

[0 Branch-and-bound tree (example for maximization problem):

root node | 154.167 LP relaxation

Tc < 8 Te > 9
1525 152 5 dual bound
$b<% \Ub>4 $b</ \$b>2
150 148.75 151.43 infeas
primal objective Te > 1(/ \xc <9
150 135

ZZ[][33

< Gap >

> The (absolute) gap during branch and bound: gap := bestdual — bestprimal

T
/]\
GE) optimum
B[ETSITTTTTTTPPTSPPIEY .
X . .
ré: primal objective
I —oo
time

ZZ[][33

< Gap >

> The (absolute) gap during branch and bound: gap := bestdual — bestprimal
T

optimum

primal objective

maximize —

N
4

time

> Stop traversing the tree, if the gap is 0, i.e. the value of the best primal solution and

the dual bound coincide

ZZ[][33

< Gap >

> The (absolute) gap during branch and bound: gap := bestdual — bestprimal

T

optimum

maximize —

N
4

time

> Stop traversing the tree, if the gap is 0, i.e. the value of the best primal solution and

the dual bound coincide

> In practise (and for large-scale MIPs): stop traversing the tree already if the

|be§fdp] is below a certain target (e.g. 5%, 1%, 0.5%, ...)
u

relative gap

ZZ[][33

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< What is combinatorial optimization? >

> Combinatorial optimization problems:
e Finite, but huge number of feasible solutions

[Complete enumeration is not an option

ZZ[][33

< What is combinatorial optimization? >

> Combinatorial optimization problems:
e Finite, but huge number of feasible solutions
[Complete enumeration is not an option

> Problems can often be solved with integer programming models

ZZ[][33

What is combinatorial optimization?

Combinatorial optimization problems:
e Finite, but huge number of feasible solutions
[Complete enumeration is not an option
Problems can often be solved with integer programming models
Usually, other methods are more efficient:
e Specially designed algorithms, approximation algorithms

e Primal/dual methods, combining IP with heuristics

ZZ[][33

What is combinatorial optimization?

Combinatorial optimization problems:
e Finite, but huge number of feasible solutions
[Complete enumeration is not an option
Problems can often be solved with integer programming models
Usually, other methods are more efficient:
e Specially designed algorithms, approximation algorithms
e Primal/dual methods, combining IP with heuristics
Examples:
e Travelling Salesman Problem (TSP)
e Minimum Spanning Tree (MST)

e Shortest Path Problem (SPP)

e Network Flow, Knapsack Problem, Bin Packing, Stable Set Problem, ...

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Cville 3¢

p\
\

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown 65

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

(asymmetric TSP)

Atown 65

ZZ[][33

< TSP — overview >

> Combinatorial explosion:

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

ZZ[][33

< TSP — overview >

> Combinatorial explosion:

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

> TSP can be formulated as a binary integer program
[1 Exponentially many (subtour elimination) constraints

[J Dual method to provide upper bounds for the solution

ZZ[][33

< TSP — overview >

> Combinatorial explosion:

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

> TSP can be formulated as a binary integer program
[1 Exponentially many (subtour elimination) constraints
[J Dual method to provide upper bounds for the solution
> Approximation algorithms and heuristics
[J Graph algorithms

[Primal methods to find (good) feasible solutions

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...

...find a minimum spanning tree for GG

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...
...find a minimum spanning tree for (G, that is: a subset £’ of the edges such that
e the edges in ' form a tree (connected and no cycles)

e all vertices of G are in the tree

e the total weight of the tree edges is minimal

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...
...find a minimum spanning tree for (G, that is: a subset £’ of the edges such that
e the edges in ' form a tree (connected and no cycles)

e all vertices of G are in the tree

e the total weight of the tree edges is minimal

[1 total weight: 290

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...
...find a minimum spanning tree for (G, that is: a subset £’ of the edges such that
e the edges in ' form a tree (connected and no cycles)

e all vertices of G are in the tree

e the total weight of the tree edges is minimal

[1 total weight: 260

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...
...find a minimum spanning tree for (G, that is: a subset £’ of the edges such that
e the edges in ' form a tree (connected and no cycles)

e all vertices of G are in the tree

e the total weight of the tree edges is minimal

[1 not allowed: not a tree!

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...
...find a minimum spanning tree for (G, that is: a subset £’ of the edges such that
e the edges in ' form a tree (connected and no cycles)

e all vertices of G are in the tree

e the total weight of the tree edges is minimal

[1 not allowed: misses vertices!

ZZ[][33

< Minimum Spanning Tree Problem >

> Given a graph G = (V, E) with non-negative edge-weights w, for all e € F...
...find a minimum spanning tree for (G, that is: a subset £’ of the edges such that
e the edges in ' form a tree (connected and no cycles)

e all vertices of G are in the tree

e the total weight of the tree edges is minimal

[1 total weight: 195

ZZ[][33

< Kruskal's algorithm >

> Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle

O & 5
%
1 o5 y
\ 4 i
o S0

ZZ[][33

< Kruskal's algorithm >

> Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle

[1 Greedy algorithm

O & 5
%
1 o5 y
\ 4 i
o S0

ZZ[][33

< Kruskal's algorithm >

> Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle
[1 Greedy algorithm
[1 Polynomial runtime

[1 efficient algorithm

O & 5
%
1 o5 y
\ 4 i
o S0

ZZ[][33

< Kruskal's algorithm >

> Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle
[1 Greedy algorithm
[1 Polynomial runtime
[1 efficient algorithm
[Yields an optimal solution for every input graph (proof!)

[exact algorithm

3 30
o \ :
‘8‘\ Q
4 o
o S0

ZZ[][33

< Shortest Path Problem >

> Given a network — i.e. a directed graph — with a length for each arc, a start node A
and a destination B...

110

134
U1

AN

122

ZZ[][33

< Shortest Path Problem >

> Given a network — i.e. a directed graph — with a length for each arc, a start node A
and a destination B...

> ...compute a shortest path through the network from A to B

AL

110

134
U1

122

ZZ[][33

< Shortest Path Problem — Dijkstra’s algorithm >

> Computes a complete shortest path tree from start node A to all other nodes

(1930-2002)

B

< Shortest Path Problem — Dijkstra’s algorithm >

> Computes a complete shortest path tree from start node A to all other nodes

(1930-2002)

B

< Shortest Path Problem — Dijkstra’s algorithm >

> Computes a complete shortest path tree from start node A to all other nodes

Edsger Wybe Dijkstra
(1930-2002)

> Polynomial runtime [efficient algorithm

> Always yields an optimal solution [exact algorithm

ARy
$‘-f.uur|al‘ ﬁ;’

B

Runtimes

()
£
)
c
>
—

n!

exp

6n

2n

linear

input size n

— polynomial —

exponential

ZZ[][33

< Efficient and exact algorithms >

< Efficient and exact algorithms >

< Efficient and exact algorithms >

efficient not efficient

exact Simplex algorithm (?)
Branch & bound

Complete enumeration

not exact | TSP heuristic using MST

approximation algorithms

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< Nonlinear optimization model >

> Model (non-linear program):

Objective maximize 10z + 150, /75 — 20z,

subject to Szp + 3z, < 50 (total land usage)
dxy, + Tz, < 70 (total working time)
dop + 4z, < 45 (total water consumption)
Th,Tp > 0 (non-negativity)

ZZ[][33

< Nonlinear optimization model >

> Model (non-linear program):

Objective maximize 10z + 150, /75 — 20z,

subject to Szp + 3z, < 50 (total land usage)
dxy, + Tz, < 70 (total working time)
dop + 4z, < 45 (total water consumption)
Th,Tp > 0 (non-negativity)

> Examples of non-linear terms:

e Products of variables: ;- z;

5 quadratic expressions

e Squares of variables:

e Higher-order terms of variables: x; - x; - 4, x? 2

e Absolute values or maxima/minima: |z;|, maxuz;

e Terms including elementary functions: sinax;, 2%, ., log(x; + xf’“)

3-

ZZ[][33

< Non-linear objective >

{E2 AN

¥

13 L1

< Non-linear constraints >

{E2 AN

< Why are linear models good and non-linear models evil? >

> Linear models
e Linear objective

[1 Level sets are straight lines

(in higher dimension: hyperplanes)
e Linear constraints

[1 Feasible region is a polygon
(in higher dimension: polyhedron)

> Non-linear models
e Non-linear objective

[1 Level sets can be complicated curves

e Non-linear constraints

[1 Feasible region can be complicated

< Local and global optima >

> Example:

max /(z —4)2 + (y — 4)?
2
5

s.t. x

1V

X

IA A
N

IA

T +y 10

A
L

r — 3y

B

< Local and global optima >

> Example:
max /(z — 4% + (y — 4)?
2
5
2
10
—4

1V

s.t. x

X

IA A

IA

Tr+vy

VAN

r — 3y

[0 (4,6) is a local (but not a global) optimum

[0 (2,2) is a (local and) global optimum

B

< Local and global optima >

> Example:

max +/(x —4)2 + (y — 4)2

s.t. x

1V

X

IAIA
N O

IN
—_
-

r+vy

VAN

T — 3y —4

[0 (4,6) is a local (but not a global) optimum

[0 (2,2) is a (local and) global optimum

< Solving non-linear models — executive summary >

> Usual strategy of solvers for non-linear models:
e Find a point somewhere in the feasible region

e Follow steps to find a local optimum

ZZ[][33

< Solving non-linear models — executive summary >

> Usual strategy of solvers for non-linear models:
e Find a point somewhere in the feasible region

e Follow steps to find a local optimum

> Problem: usually, the solution is not a global optimum!

ZZ[][33

< Solving non-linear models — executive summary >

> Usual strategy of solvers for non-linear models:
e Find a point somewhere in the feasible region

e Follow steps to find a
> Problem: usually, the solution is not a global optimum!

> In special cases, this works nonetheless:
e |f a concave function is maximized over a convex feasible set
e |f a convex function is minimized over a convex feasible set

e |f the problem is linear

ZZ[][33

< Solving non-linear models — executive summary >

> Usual strategy of solvers for non-linear models:
e Find a point somewhere in the feasible region

e Follow steps to find a
> Problem: usually, the solution is not a !

> In special cases, this works nonetheless:
e |f a concave function is maximized over a convex feasible set
e |f a convex function is minimized over a convex feasible set

e |f the problem is linear

> Possibilities otherwise:
e Reformulate or approximate as a linear model

e Rely on heuristic strategies and luck...

ZZ[][33

< Mountain climbing >

> Non-linear optimization is like mountain-climbing in the fog

1B

< Mountain climbing >

> Non-linear optimization is like mountain-climbing in the fog

1B

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< General principle >

> Jobs:

1B

< General principle >

]
]
|]]
> Jobs:
]
[]
]]
| |

> Schedule (Gantt chart): [] optimal with respect to an objective to specify!
Y I B 4| 9

WV

time

Bl e /B
A GPE Jj
$-fuurlol 5

1B

< Basic terminology >

> Jobs usually have: a processing time p;

ZZ[][33

< Basic terminology >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;, such that different jobs do not overlap

Input O Dy Pk

Output [J S Sk

ZZ[][33

< Basic terminology >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;, such that different jobs do not overlap

[l [Completion time C; :=s; + p;

Input O Dy Pk

Output [S oF Sk Ch

ZZ[][33

< Basic terminology >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;, such that different jobs do not overlap
[l [Completion time C; :=s; + p;

n
> Possible objective functions: [I 'Sum of completion times Z C;
(to minimize) =1

[0 Makespan max Cj

71=1,....n

Input O Dy Pk

ZZ[][33

< Scheduling — executive summary | >

> Single Machine, minimize sum of completion times

[J easy (greedy algorithm)

W 12 20 22

T
0 6 16 28 42 56 71 87 107 129

WV

1B

< Scheduling — executive summary | >

> Single Machine, minimize sum of completion times

[J easy (greedy algorithm)

W 12 20 22

T T T T T T T T
16 28 42 56 71 87 107 129

WV

o —
S —

> Single Machine, minimize makespan

[0 trivial (always the same)

4

/[\
0 129

& 2
2
2 3
a0, &,

% o
S Tuetian %

1B

< Scheduling — executive summary | >

> Single Machine, minimize sum of completion times

[J easy (greedy algorithm)

W 12 20 22

T T T T T T T T
16 28 42 56 71 87 107 129

WV

o —
S —

> Single Machine, minimize makespan

[0 trivial (always the same)

4

/[\
0 129
> Single Machine, jobs with release dates, minimize sum of completion times

[1 similarly easy (greedy algorithm)

Qi eor /B
A GPE /5
$"“Eﬂoll 5

1B

< Scheduling — executive summary |l >

> Jobs with precedence constraints (project scheduling)
e Single machine [J easy (greedy)

e Multiple machines [hard

e Unlimited number of machines [1 easy again (critical path method)

ZZ[][33

< Scheduling — executive summary |l >

> Jobs with precedence constraints (project scheduling)
e Single machine [J easy (greedy)

e Multiple machines [hard

e Unlimited number of machines [1 easy again (critical path method)

> Multiple machines, minimize sum of completion times

[1 easy (greedy)
ey T =

WV

1B

< Scheduling — executive summary |l >

> Jobs with precedence constraints (project scheduling)
e Single machine [J easy (greedy)

e Multiple machines [hard

e Unlimited number of machines [1 easy again (critical path method)

> Multiple machines, minimize sum of completion times

[1 easy (greedy)
ey T =

oy -

WV

> Multiple machines, minimize makespan

[J hard (partitioning problem)

& =
g
2 3
£ &

o B
Suntian ¥

1B

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< Lot Sizing — summary - model >

Data: Variables:

d¢ Demand in period ¢ xy production in period ¢

fi fixed (start-up) costs in period ¢ y; installation of capacity in

c; unit production costs in period t period ¢
h: unit holding costs in period ¢ s¢ inventory at the end of
C; available capacity in period ¢ period 1
min Z ciry + fiys + hesy
t
St_l—l—CCt:dt—l—St tzl,...,?’b
CUtSCtyt tzl,...,n
a:t,stZO tzl,...,n
So — 0
ytE{O,l} t=1,...,n

ZZ[][33

< Lot Sizing — summary - observations >
e NP-hard problem

e poly-solvable cases:
> Wagner-Whitin: C} = oo for all periods t. In practice, C; = M with M very large value.
> constant capacity: C; = C for all periods t.
> Discrete lot sizing: constant capacity C; = C' and x; = Cyy; for all periods ¢

> capacity in each period an integer multiple of constant batch size: Cy = Cy; with y, € 7
for all periods t.

ZZ[][33

< Overview >

> Models, Data and Instances

> Linear Optimization
[1 Modelling as a linear program
[1 Solving a linear program (graphically, and in princple by the simplex algorithm)
[Sensitivity analysis

> (Mixed) Integer Programming

[1 Modelling as a (mixed) integer program
[J How to solve a (mixed) integer program (in principle)
> Combinatorial Optimization
[1 Exemplary problems, algorithms, and runtimes
> Nonlinear Optimization
[1 Local and global optima, convex optimization
> Scheduling
> Lot Sizing
> Multicriteria Optimization

ZZ[][33

< Multicriteria Optimization — summary - | >

Multicriteria MIP model

n n n

Z 1. Z 2 . }: q,.
ma:X C]QZ'], Cja:],..., ij]

J=1 J=1 J=1

n
s.t. Zaija:jgbi 1=1,....m

j=1
Ejga:jguj jZl,...,?’L
ijZ_|_]:1,,k‘

ZZ[][33

< Multicriteria Optimization — summary - | >

Multicriteria MIP model

n n n

Z 1. Z 2 . 2: q,.
maX C]aj], Cjaj],---, ij]

j=1 j=1 j=1

n
s.t. Zaija:jgbi 1=1,....m

j=1
EjSCCjS’LLj jZl,...,?’L
33jEZ_|_]:1,,]{3

ldeas:

e find efficient (non-dominated) solutions (A solution is efficient or non-dominated if no

objective value can be improved without reducing the other objective values)
e combine objective functions to weighted linear combination

e maximize one objective subject to bounds on all other objectives

e goal programming: solver get's numerical requirements ¢; that have to be achieved as much
as possible

ZZ[][33

< Exam >

Oral Exam takes place on Wed, 15 Feb, 10:15 a.m. - 1:45 p.m.
in PTZ 307

(GGOOD LUCK!

ZZ[][33

