Mathematical Tools
 for Engineering and Management

Revision

08 Feb 2012
$\left(\frac{\text { GPE }}{(G)}\right.$
\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program
\Rightarrow Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
\Rightarrow Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
\triangleright Combinatorial Optimization
\Rightarrow Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
\Rightarrow Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization


```
Given n sequences of colours ci,j (1\leqi\leqn,j\in\mathbb{N})\mathrm{ find a}
mapping f:\mathbb{N}->{0,\ldots,n} such that
#{k| c
j(k) :=
|
    if }k=1\mathrm{ or }f(\mp@subsup{k}{}{\prime})\not=f(k)\forall\mp@subsup{k}{}{\prime}<
j(\mp@subsup{k}{}{\prime})+1 otherwise, where }\mp@subsup{k}{}{\prime}\mathrm{ is maximal with }\mp@subsup{k}{}{\prime}<k,f(\mp@subsup{k}{}{\prime})=f(k
```


Model

Data Sets
\triangleright A model is a mathematical formulation of the problem, independent of any concrete data (as possible input)
\triangleright An instance is a mathematical model, together with one associated data set
\qquad

Mathematical optimization

objective to maximize/minimize - constraints to respect - solution: variable assignment

Mixed integer programming

linear objective
linear constraints
both continuous and integer variables

Linear programming

only continuous variables

Nonlinear optimization

non-linear objective allowed non-linear constraints allowed continuous and/or integer variables

```
Integer programming
only integer variables only integer variables
```

\qquad

Sets of relevant elements
(for example: products, cities, machines, types of raw material, ...)
\qquad
......

Sets of relevant elements
(for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)
\qquad ...

Sets of relevant elements
(for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)

Variables: Unknowns to be determined
(for example: number of items to produce, number of shops to open in a certain city, decision to buy a certain machine or not, amount of raw material to use, ...)
\qquad

Sets of relevant elements
(for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)

Variables: Unknowns to be determined
(for example: number of items to produce, number of shops to open in a certain city, decision to buy a certain machine or not, amount of raw material to use, ...)

Constraints: Relationships that have to hold between variables and parameters (for example: maximal number of items that can be produced by a machine, minimal number of shops to open, budget for buying raw material, ...)
\qquad

Sets of relevant elements (for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)

Variables: Unknowns to be determined
(for example: number of items to produce, number of shops to open in a certain city, decision to buy a certain machine or not, amount of raw material to use, ...)

Constraints: Relationships that have to hold between variables and parameters (for example: maximal number of items that can be produced by a machine, minimal number of shops to open, budget for buying raw material, ...)
\triangleright Mathematical Program: Collection of constraints and variables together with an Objective function to be maximized/minimized
\qquad

Mathematical program:

S P

maximize/minimize Objective function subject to C

\triangleright Input: One data set $\widehat{=}$ Values for sets and parameters.
\triangleright Output: Variable assignment such that the objective function value is maximal/minimal and the constraints are respected
\qquad

1. Identify variables

\Rightarrow Which decisions have to be made?
\Rightarrow In which numbers are they best represented?

1. Identify variables

\Rightarrow Which decisions have to be made?
\Rightarrow In which numbers are they best represented?
2. Identify sets and parameters
\Rightarrow Which objects influence the problem?
\Rightarrow Which values define these objects and are relevant?
\qquad

1. Identify variables

\Rightarrow Which decisions have to be made?

- In which numbers are they best represented?

2. Identify sets and parameters
\Rightarrow Which objects influence the problem?
\Rightarrow Which values define these objects and are relevant?
3. Identify objective function

Objective
\Rightarrow Which quantity has to be optimized, and in which direction: minimize or maximize?
\Rightarrow How can this quantity be written in terms of the variables and parameters?
\qquad

1. Identify variables

\Rightarrow Which decisions have to be made?

- In which numbers are they best represented?

2. Identify sets and parameters
\Rightarrow Which objects influence the problem?
\Rightarrow Which values define these objects and are relevant?
3. Identify objective function

Objective
\Rightarrow Which quantity has to be optimized, and in which direction: minimize or maximize?
\Rightarrow How can this quantity be written in terms of the variables and parameters?
4. Identify constraints

- Which restrictions have to be taken into account?
\Rightarrow How can these restrictions be expressed in terms of variables and parameters?
\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program
- Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
\Rightarrow Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
\triangleright Combinatorial Optimization
- Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
\Rightarrow Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization

Fruit	Bananas	Pineapples	
Revenue	\$10000	\$20000	
Land use	5 a	3 a	- Land: 50a
Time use	4h	7h	- Working time: 70h
Water consumpt.	4001	4001	- Water supply: 45001

\triangleright Question: How much of each fruit should be produced to maximize the profit?
\qquad

Fruit	Bananas	Pineapples	
Revenue	\$10000	\$20000	Available capacities and water resources:
Land use	5 a	3 a	- Land: 50a
Time use	4h	7h	- Working time: 70h
Water consumpt.	4001	4001	- Water supply: 45001

\triangleright Question: How much of each fruit should be produced to maximize the profit?
\Rightarrow Modelled as a linear program:
\qquad

Fruit	Bananas	Pineapples		
Revenue	$\$ 10000$	$\$ 20000$		Available capacities and water resources:
Land use	5 a	3 a	- Land: 50a	
Time use	4 h	7 h	- Working time: 70 h	
Water consumpt.	400 l	400 l	- Water supply: 4500 l	

\triangleright Question: How much of each fruit should be produced to maximize the profit?

- Modelled as a linear program:

maximize	(total revenue) $10 x_{\mathrm{b}}+20 x_{\mathrm{p}}$	
subject to	(total land usage)	$5 x_{\mathrm{b}}+3 x_{\mathrm{p}} \leq 50$
	(total working time)	$4 x_{\mathrm{b}}+7 x_{\mathrm{p}} \leq 70$
	(total water consumption)	$4 x_{\mathrm{b}}+4 x_{\mathrm{p}} \leq 45$
	(non-negativity)	$x_{\mathrm{b}}, x_{\mathrm{p}} \geq 0$

Objective

C V
\qquad

	x_{b}	x_{p}	revenue	total land use	total working time	total water cons.
feasible	5	6	170	43	62	44
feasible	4	7	180	41	65	44
infeasible	2	9	200	37	71	44
optimal	0	10	200	30	70	40
available:						50

$$
\begin{array}{lrl}
\text { maximize } & \text { (total revenue) } \quad 10 x_{\mathrm{b}}+20 x_{\mathrm{p}} & \\
\text { subject to } & \text { (total land usage) } & 5 x_{\mathrm{b}}+3 x_{\mathrm{p}}
\end{array} \leq 50
$$

\triangleright Geometric solving only works for at most 2 (maybe 3) variables

- Geometric solving only works for at most 2 (maybe 3) variables
\triangleright More generally: Simplex Algorithm
\triangleright Idea: Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
\qquad
\triangleright Geometric solving only works for at most 2 (maybe 3) variables
\triangleright More generally: Simplex Algorithm
\triangleright Idea: Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
\triangleright More precisely:
- Search for some vertex (basic feasible solution)
- If there is a neighbouring vertex with a better objective...
- ...jump to this vertex and repeat
- Otherwise: stop - an optimal solution is reached!
\qquad
\triangleright Geometric solving only works for at most 2 (maybe 3) variables
\triangleright More generally: Simplex Algorithm
\triangleright Idea: Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
\triangleright More precisely:
- Search for some vertex (basic feasible solution)
- If there is a neighbouring vertex with a better objective...
- ...jump to this vertex and repeat
- Otherwise: stop - an optimal solution is reached!
\triangleright Special cases:
- No starting vertex can be found \Rightarrow Problem is infeasible
- No neighbouring vertex in some objective-increasing direction \Rightarrow Problem is unbounded
$\left(\frac{17}{(G P E)}\right)$
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947
- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method
\Rightarrow developed by L.G. Khachiyan in 1979
\Rightarrow theoretically fast (polynomial), but practically useless
- Interior Point Methods
- Barrier Method (Karmarkar, 1984)
\Rightarrow theoretically and practically fast
\Rightarrow used for large-scale LPs

George Bernard Dantzig (1914-2005)

Leonid Genrikhovich Khachiyan (1952-2005)

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side

9

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side
\triangleright Shadow prices for non-binding constraints are always 0

\qquad

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side
\triangleright Shadow prices for non-binding constraints are always 0
\triangleright Shadow price for a constraint is only valid if the RHS is in a certain range

\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program

- Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
- Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
\triangleright Combinatorial Optimization
- Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
\Rightarrow Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization

LP-
relaxation $\begin{cases}\text { maximize/minimize } \sum_{j=1}^{n} c_{j} x_{j} & \text { Objective function } \\ \text { subject to } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m & \text { C } \\ \ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=1, \ldots, n & \mathrm{~V}\end{cases}$
$\Rightarrow I_{\text {integer }} P_{\text {rogram }}$

$$
x_{j} \text { integer for all } j=1, \ldots, n
$$

$\Rightarrow M_{\text {ied }} I_{\text {integer }} P_{\text {program }}$

$$
x_{j} \text { integer for all } j=1, \ldots, \ell
$$

$$
(\ell<n)
$$

\Rightarrow Binary variables:

$$
x_{j} \in\{0,1\} \text { for all } j=1, \ldots, \ell
$$

$\triangleright \quad$ Trigger a yes/no-decision if some quantity reaches some value V
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ "yes"
$\Rightarrow \quad(\ldots$ linear expression for quantity $\ldots) \leq V+M \cdot y \quad(M$: large number)

E \qquad
\triangleright Trigger a yes/no-decision if some quantity reaches some value V
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ "yes"
$\Rightarrow \quad(\ldots$ linear expression for quantity $\ldots) \leq V+M \cdot y \quad(M$: large number)
\triangleright Logical constraints: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ "yes" for decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Trigger a yes/no-decision if some quantity reaches some value V
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ "yes"
$\Rightarrow \quad(\ldots$ linear expression for quantity $\ldots) \leq V+M \cdot y \quad$ (M : large number)
\triangleright Logical constraints: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ "yes" for decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Set packing constraints:
\Rightarrow choose at most/at least/exactly one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1 / \geq 1 /=1$
\triangleright Trigger a yes/no-decision if some quantity reaches some value V
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ "yes"
$\Rightarrow \quad(\ldots$ linear expression for quantity $\ldots) \leq V+M \cdot y \quad$ (M : large number)
\triangleright Logical constraints: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ "yes" for decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Set packing constraints:
\Rightarrow choose at most/at least/exactly one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1 / \geq 1 /=1$
\triangleright Lots of other types...
\triangleright Start by solving the LP relaxation
$\left(\frac{17}{(G P E)}\right)$ \qquad
\qquad
\triangleright Start by solving the LP relaxation
\triangleright If the LP-optimum is not integer: split the problem into two subproblems and iterate

GPE \qquad
\triangleright Start by solving the LP relaxation
\triangleright If the LP-optimum is not integer: split the problem into two subproblems and iterate
\Rightarrow Branch-and-bound tree (example for maximization problem):

$\left(\frac{17}{(G P E)}\right)$ \qquad
\triangleright The (absolute) gap during branch and bound: gap := bestdual - bestprimal

\qquad

Z 80
\triangleright The (absolute) gap during branch and bound: gap := bestdual - bestprimal

\triangleright Stop traversing the tree, if the gap is 0 , i.e. the value of the best primal solution and the dual bound coincide
\triangleright The (absolute) gap during branch and bound: gap := bestdual - bestprimal

\triangleright Stop traversing the tree, if the gap is 0 , i.e. the value of the best primal solution and the dual bound coincide
$\triangleright \quad$ In practise (and for large-scale MIPs): stop traversing the tree already if the relative gap $\frac{\text { gap }}{\mid \text { bestdual } \mid}$ is below a certain target (e.g. $5 \%, 1 \%, 0.5 \%, \ldots$)
\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program

- Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
\Rightarrow Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
- Combinatorial Optimization
- Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
\Rightarrow Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Combinatorial optimization problems:
- Finite, but huge number of feasible solutions
\Rightarrow Complete enumeration is not an option

GPE \qquad
\qquad
\triangleright Combinatorial optimization problems:

- Finite, but huge number of feasible solutions
- Complete enumeration is not an option
\triangleright Problems can often be solved with integer programming models
\qquad
\qquad
\triangleright Combinatorial optimization problems:
- Finite, but huge number of feasible solutions
- Complete enumeration is not an option
\triangleright Problems can often be solved with integer programming models
\triangleright Usually, other methods are more efficient:
- Specially designed algorithms, approximation algorithms
- Primal/dual methods, combining IP with heuristics
\triangleright Combinatorial optimization problems:
- Finite, but huge number of feasible solutions
\Rightarrow Complete enumeration is not an option
\triangleright Problems can often be solved with integer programming models
- Usually, other methods are more efficient:
- Specially designed algorithms, approximation algorithms
- Primal/dual methods, combining IP with heuristics
\triangleright Examples:
- Travelling Salesman Problem (TSP)
- Minimum Spanning Tree (MST)
- Shortest Path Problem (SPP)
- Network Flow, Knapsack Problem, Bin Packing, Stable Set Problem, ...
\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.
\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

(20.

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

(asymmetric TSP)
\qquad
\triangleright Combinatorial explosion:

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\triangleright Combinatorial explosion:

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\triangleright TSP can be formulated as a binary integer program
\Rightarrow Exponentially many (subtour elimination) constraints
\Rightarrow Dual method to provide upper bounds for the solution
\triangleright Combinatorial explosion:

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\triangleright TSP can be formulated as a binary integer program
\Rightarrow Exponentially many (subtour elimination) constraints
\Rightarrow Dual method to provide upper bounds for the solution
\triangleright Approximation algorithms and heuristics
\Rightarrow Graph algorithms
\Rightarrow Primal methods to find (good) feasible solutions
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$...find a minimum spanning tree for G

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that

- the edges in E^{\prime} form a tree (connected and no cycles)
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

位
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that

- the edges in E^{\prime} form a tree (connected and no cycles)
- all vertices of G are in the tree
- the total weight of the tree edges is minimal
\Rightarrow total weight: 290

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree (connected and no cycles)
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

\Rightarrow total weight: 260
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree (connected and no cycles)
- all vertices of G are in the tree
- the total weight of the tree edges is minimal
\Rightarrow not allowed: not a tree!

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree (connected and no cycles)
- all vertices of G are in the tree
- the total weight of the tree edges is minimal
\Rightarrow not allowed: misses vertices!

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree (connected and no cycles)
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

" total weight: 195
\triangleright Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle

\triangleright Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle
\Rightarrow Greedy algorithm

\triangleright Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle
\Rightarrow Greedy algorithm
\Rightarrow Polynomial runtime
\Rightarrow efficient algorithm

\triangleright Idea: at every step select the next cheap edge, as long as it doesn't result in a cycle
\Rightarrow Greedy algorithm
\Rightarrow Polynomial runtime
\Rightarrow efficient algorithm
\Rightarrow Yields an optimal solution for every input graph (proof!)
\Rightarrow exact algorithm

\triangleright Given a network - i.e. a directed graph - with a length for each arc, a start node A and a destination B...

\square
\triangleright Given a network - i.e. a directed graph - with a length for each arc, a start node A and a destination B...
$\triangleright \quad$...compute a shortest path through the network from A to B

\triangleright Computes a complete shortest path tree from start node A to all other nodes

Edsger Wybe Dijkstra (1930-2002)
\qquad
\triangleright Computes a complete shortest path tree from start node A to all other nodes

232
343

Edsger Wybe Dijkstra (1930-2002)

\triangleright Computes a complete shortest path tree from start node A to all other nodes

Edsger Wybe Dijkstra (1930-2002)
\triangleright Polynomial runtime \Rightarrow efficient algorithm
\triangleright Always yields an optimal solution \Rightarrow exact algorithm

input size n
linear－polynomial－exponential

辣数逶

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).
\qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be proved that it always (i.e. for every input!) returns a solution with best possible objective).
(GPE) \qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be proved that it always (i.e. for every input!) returns a solution with best possible objective).

	efficient	not efficient
exact	Dijkstra's algorithm	Simplex algorithm (?)
	Kruskal's algorithm	Branch \& bound
	Ellipsoid method	Complete enumeration
not exact	TSP heuristic using MST approximation algorithms	

\qquad
\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program

- Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
\Rightarrow Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
\triangleright Combinatorial Optimization
\Rightarrow Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
- Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Model (non-linear program):
Objective maximize $10 x_{\mathrm{b}}+150 \sqrt{x_{\mathrm{p}}}-20 x_{\mathrm{p}}$

$$
\text { subject to } \quad 5 x_{\mathrm{b}}+3 x_{\mathrm{p}} \leq 50 \quad \text { (total land usage) }
$$

$$
4 x_{\mathrm{b}}+7 x_{\mathrm{p}} \leq 70 \quad \text { (total working time) }
$$

$$
4 x_{\mathrm{b}}+4 x_{\mathrm{p}} \leq 45 \quad \text { (total water consumption) }
$$

$$
x_{\mathrm{b}}, x_{\mathrm{p}} \geq 0 \quad \text { (non-negativity) }
$$

(9PE) \qquad ..

- Model (non-linear program):

Objective maximize $10 x_{\mathrm{b}}+150 \sqrt{x_{\mathrm{p}}}-20 x_{\mathrm{p}}$

$$
\text { subject to } \quad 5 x_{\mathrm{b}}+3 x_{\mathrm{p}} \leq 50 \quad \text { (total land usage) }
$$

$$
\left.4 x_{\mathrm{b}}+7 x_{\mathrm{p}} \leq 70 \quad \text { (total working time }\right)
$$

$$
4 x_{\mathrm{b}}+4 x_{\mathrm{p}} \leq 45 \quad \text { (total water consumption) }
$$

$$
x_{\mathrm{b}}, x_{\mathrm{p}} \geq 0 \quad \text { (non-negativity) }
$$

\triangleright Examples of non-linear terms:

- Products of variables: $x_{i} \cdot x_{j}$
- Squares of variables: $\left.x_{i}^{2}\right\}$ quadratic expressions
- Higher-order terms of variables: $x_{i} \cdot x_{j} \cdot x_{k}, x_{j}^{5} \cdot x_{j}$
- Absolute values or maxima/minima: $\left|x_{i}\right|, \max x_{j}$
- Terms including elementary functions: $\sin x_{i}, 2^{x_{i} \cdot x_{j}}, \frac{1}{\sqrt{x_{i}}}, \log \left(x_{i}+x_{j}^{x_{k}}\right)$

$\triangleright \quad$ Linear models
- Linear objective
\Rightarrow Level sets are straight lines (in higher dimension: hyperplanes)
- Linear constraints
\Rightarrow Feasible region is a polygon (in higher dimension: polyhedron)
\triangleright Non-linear models
- Non-linear objective
- Level sets can be complicated curves
- Non-linear constraints
\Rightarrow Feasible region can be complicated

- Optimal solutions can always be found in vertices

\triangleright Example:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Example:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

$\Rightarrow(4,6)$ is a local (but not a global) optimum
$\Rightarrow(2,2)$ is a (local and) global optimum

\triangleright Example:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

$\Rightarrow(4,6)$ is a local (but not a global) optimum
$\Rightarrow(2,2)$ is a (local and) global optimum

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value

A feasible solution is called globally optimal if there is no feasible solution at all with a better objective function value
$\triangleright \quad$ Usual strategy of solvers for non-linear models:

- Find a point somewhere in the feasible region
- Follow steps to find a local optimum
(GPE) \qquad
\qquad
\triangleright Usual strategy of solvers for non-linear models:
- Find a point somewhere in the feasible region
- Follow steps to find a local optimum
\triangleright Problem: usually, the solution is not a global optimum!
\qquad
\qquad
\triangleright Usual strategy of solvers for non-linear models:
- Find a point somewhere in the feasible region
- Follow steps to find a local optimum
\triangleright Problem: usually, the solution is not a global optimum!
\triangleright In special cases, this works nonetheless:
- If a concave function is maximized over a convex feasible set
- If a convex function is minimized over a convex feasible set
- If the problem is linear

GPE \qquad
\triangleright Usual strategy of solvers for non-linear models:

- Find a point somewhere in the feasible region
- Follow steps to find a local optimum
\triangleright Problem: usually, the solution is not a global optimum!
\triangleright In special cases, this works nonetheless:
- If a concave function is maximized over a convex feasible set
- If a convex function is minimized over a convex feasible set
- If the problem is linear
\triangleright Possibilities otherwise:
- Reformulate or approximate as a linear model
- Rely on heuristic strategies and luck...
(TPE)
$\triangleright \quad$ Non－linear optimization is like mountain－climbing in the fog

※世世
\triangleright Non-linear optimization is like mountain-climbing in the fog

\triangleright How do you know that you're on the highest mountain if you can't see the other peaks?
\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program
- Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
\Rightarrow Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
\triangleright Combinatorial Optimization
\Rightarrow Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
\Rightarrow Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Jobs:

\triangleright Jobs:

\triangleright Schedule (Gantt chart):
\Rightarrow optimal with respect to an objective to specify!

Machine

time
\triangleright Jobs usually have: a processing time p_{j}

Input $\quad \Rightarrow$

\qquad
\qquad
$Z \mathrm{ZCD}$
\triangleright Jobs usually have: a processing time p_{j}
\triangleright A schedule has to provide: a start time s_{j}, such that different jobs do not overlap

\square

Output $\Rightarrow s_{j}$
s_{k}
\triangleright Jobs usually have: a processing time p_{j}
\triangleright A schedule has to provide: a start time s_{j}, such that different jobs do not overlap
\Rightarrow Completion time $C_{j}:=s_{j}+p_{j}$

(GPE) \qquad
\triangleright Jobs usually have: a processing time p_{j}
\triangleright A schedule has to provide: a start time s_{j}, such that different jobs do not overlap
\Rightarrow Completion time $C_{j}:=s_{j}+p_{j}$
$\triangleright \begin{aligned} & \text { Possible objective functions: } \\ & \text { (to minimize) }\end{aligned} \Rightarrow$ Sum of completion times $\sum_{j=1}^{n} C_{j}$
\Rightarrow Makespan $\max _{j=1, \ldots, n} C_{j}$

\qquad
\triangleright Single Machine, minimize sum of completion times
\Rightarrow easy (greedy algorithm)

		10		12		14		14		15		16		20		22	
\uparrow			\uparrow														
0			16		28		42		56		71		87		107		129

\qquad
\triangleright Single Machine, minimize sum of completion times
\Rightarrow easy (greedy algorithm)

6		10		12		14		14		15		16		20		22	
\uparrow	\uparrow		\uparrow														
0	6		16		28		42		56		71		87		107		129

\triangleright Single Machine, minimize makespan
\Rightarrow trivial (always the same)

16	10	6

0 \qquad
\triangleright Single Machine, minimize sum of completion times
\Rightarrow easy (greedy algorithm)

Machine

6		10		12		14		14		15		16		20		22	
\uparrow	\uparrow		\uparrow														
0	6		16		28		42		56		71		87		107		129

\triangleright Single Machine, minimize makespan
\Rightarrow trivial (always the same)

\triangleright Single Machine, jobs with release dates, minimize sum of completion times
\Rightarrow similarly easy (greedy algorithm)
$\triangleright \quad$ Jobs with precedence constraints (project scheduling)

- Single machine \Rightarrow easy (greedy)
- Multiple machines \Rightarrow hard
- Unlimited number of machines \Rightarrow easy again (critical path method)
(GPE) \qquad
\qquad
\triangleright Jobs with precedence constraints (project scheduling)
- Single machine $\boldsymbol{\Rightarrow}$ easy (greedy)
- Multiple machines \Rightarrow hard
- Unlimited number of machines \Rightarrow easy again (critical path method)
\triangleright Multiple machines, minimize sum of completion times
\Rightarrow easy (greedy)

\triangleright Jobs with precedence constraints (project scheduling)
- Single machine $\boldsymbol{\Rightarrow}$ easy (greedy)
- Multiple machines \Rightarrow hard
- Unlimited number of machines \Rightarrow easy again (critical path method)
\triangleright Multiple machines, minimize sum of completion times
\Rightarrow easy (greedy)

\triangleright Multiple machines, minimize makespan
\Rightarrow hard (partitioning problem)
$\left(\frac{T P}{(G P E)}:\right.$
\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program
- Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
\Rightarrow Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
\triangleright Combinatorial Optimization
\Rightarrow Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
\Rightarrow Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
$\left(\frac{17}{(G P E)}\right)$

Data:
d_{t} Demand in period t
f_{t} fixed (start-up) costs in period t
c_{t} unit production costs in period t
h_{t} unit holding costs in period t
C_{t} available capacity in period t

$$
\begin{aligned}
\min & \sum_{t} c_{t} x_{t}+f_{t} y_{t}+h_{t} s_{t} \\
s_{t-1}+x_{t} & =d_{t}+s_{t} \\
x_{t} & \leq C_{t} y_{t} \\
x_{t}, s_{t} & \geq 0 \\
s_{0} & =0 \\
y_{t} & \in\{0,1\}
\end{aligned}
$$

Variables:
x_{t} production in period t
y_{t} installation of capacity in period t
s_{t} inventory at the end of period t

$$
t=1, \ldots, n
$$

...

- NP-hard problem
- poly-solvable cases:
\triangleright Wagner-Whitin: $C_{t}=\infty$ for all periods t. In practice, $C_{t}=M$ with M very large value.
\triangleright constant capacity: $C_{t}=C$ for all periods t.
\triangleright Discrete lot sizing: constant capacity $C_{t}=C$ and $x_{t}=C_{t} y_{t}$ for all periods t
\triangleright capacity in each period an integer multiple of constant batch size: $C_{t}=C y_{t}$ with $y_{t} \in \mathbb{Z}_{+}$ for all periods t.
\triangleright Models, Data and Instances
\triangleright Linear Optimization
\Rightarrow Modelling as a linear program
- Solving a linear program (graphically, and in princple by the simplex algorithm)
\Rightarrow Sensitivity analysis
\triangleright (Mixed) Integer Programming
\Rightarrow Modelling as a (mixed) integer program
\Rightarrow How to solve a (mixed) integer program (in principle)
\triangleright Combinatorial Optimization
\Rightarrow Exemplary problems, algorithms, and runtimes
\triangleright Nonlinear Optimization
\Rightarrow Local and global optima, convex optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization

Multicriteria MIP model

$$
\begin{array}{rl}
\max \sum_{j=1}^{n} c_{j}^{1} x_{j}, \sum_{j=1}^{n} c_{j}^{2} x_{j}, \ldots, & \\
\sum_{j=1}^{n} c_{j}^{q} x_{j} & \\
\text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
\ell_{j} \leq x_{j} \leq u_{j} & j=1, \ldots, n \\
x_{j} \in \mathbb{Z}_{+} & j=1, \ldots, k
\end{array}
$$

$\left(\begin{array}{l}(\mathrm{GPE}) \\ (2)\end{array}\right.$ \qquad

Multicriteria MIP model

$$
\begin{array}{rl}
\max \sum_{j=1}^{n} c_{j}^{1} x_{j}, \sum_{j=1}^{n} c_{j}^{2} x_{j}, \ldots, \sum_{j=1}^{n} c_{j}^{q} x_{j} & \\
\text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
\ell_{j} \leq x_{j} \leq u_{j} & j=1, \ldots, n \\
x_{j} \in \mathbb{Z}_{+} & j=1, \ldots, k
\end{array}
$$

Ideas:

- find efficient (non-dominated) solutions (A solution is efficient or non-dominated if no objective value can be improved without reducing the other objective values)
- combine objective functions to weighted linear combination
- maximize one objective subject to bounds on all other objectives
- goal programming: solver get's numerical requirements \tilde{c}_{j} that have to be achieved as much as possible
\qquad

Oral Exam takes place on Wed, 15 Feb, 10:15 a.m. - 1:45 p.m. in PTZ 307

Good Luck!
\qquad

