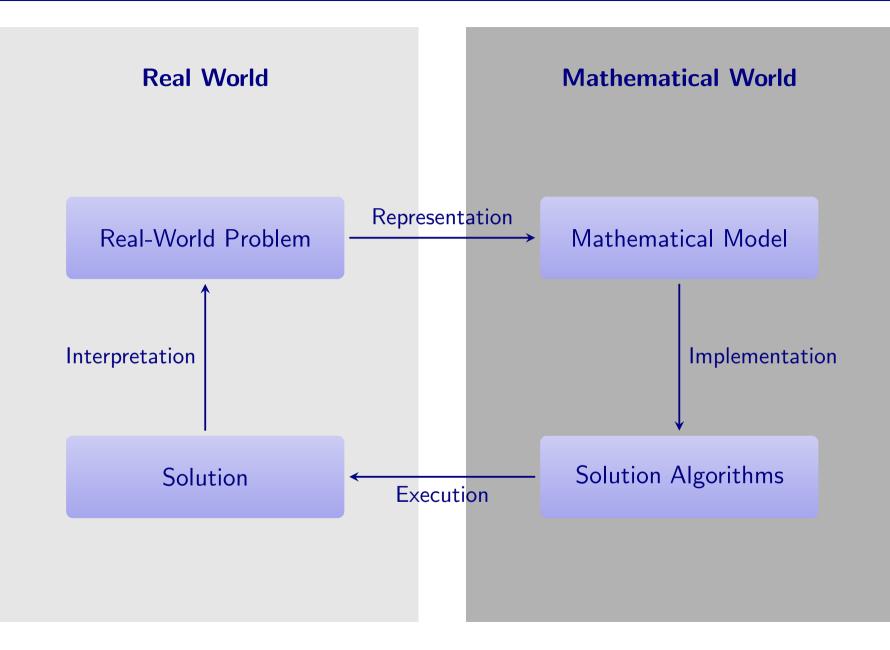
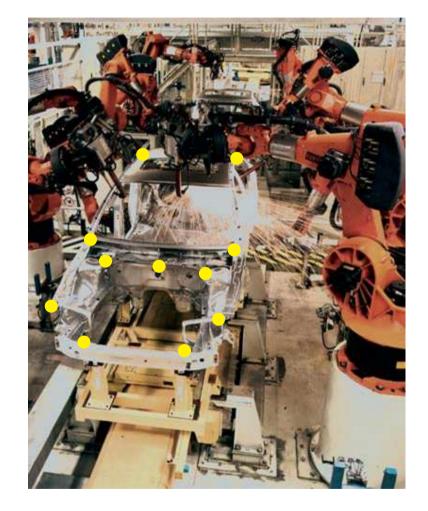
Mathematical Tools for Engineering and Management

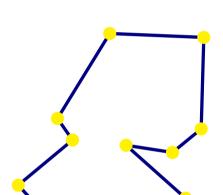
Lecture 2

26 Oct 2011

- ▷ Models, Data and Algorithms
- ▷ Linear Optimization
- Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling; Mathematical Background: Branch & Bound
- ▷ Branch & Bound, Cutting Planes; More Examples; Combinatorial Optimization
- Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ Complexity Theory
- Nonlinear Optimization
- \triangleright Scheduling
- ▷ Lot Sizing
- Multicriteria Optimization
- ⊳ Oral exam







▷ Problem to solve: find an optimal order of welding points!

- ▷ Further specifications:
 - Several robots available

- ▷ Further specifications:
 - Several robots available
 - \rightarrow minimize $\max_r(t_{\mathsf{travel},r} + t_{\mathsf{weld},r})$

- ▷ Further specifications:
 - Several robots available
 - \rightarrow minimize $\max_r(t_{\mathsf{travel},r} + t_{\mathsf{weld},r})$
 - ➡ Vehicle Routing problem with stop times

- ▷ Further specifications:
 - Several robots available
 - \rightarrow minimize $\max_r(t_{\mathsf{travel},r} + t_{\mathsf{weld},r})$
 - ➡ Vehicle Routing problem with stop times
 - Only one robot

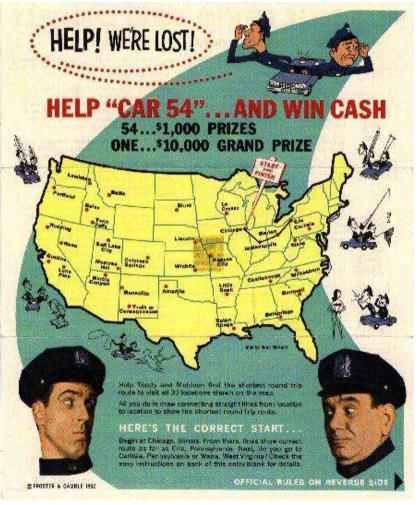
- ▷ Further specifications:
 - Several robots available
 - \rightarrow minimize $\max_r(t_{\mathsf{travel},r} + t_{\mathsf{weld},r})$
 - ➡ Vehicle Routing problem with stop times
 - Only one robot
 - \rightarrow minimize t_{travel}

- ▷ Further specifications:
 - Several robots available
 - \rightarrow minimize $\max_r(t_{\mathsf{travel},r} + t_{\mathsf{weld},r})$
 - ➡ Vehicle Routing problem with stop times
 - Only one robot
 - \rightarrow minimize t_{travel}
 - ➡ Travelling Salesman Problem

- ▷ Further specifications:
 - Several robots available
 - \rightarrow minimize $\max_r(t_{\mathsf{travel},r} + t_{\mathsf{weld},r})$
 - ➡ Vehicle Routing problem with stop times
 - Only one robot
 - \rightarrow minimize t_{travel}
 - ➡ Travelling Salesman Problem
- Reformulation as abstract (mathematical) problem enables us to use results and solutions previously encountered!

- ▷ Further specifications:
 - Several robots available
 - \rightarrow minimize $\max_r(t_{\mathsf{travel},r} + t_{\mathsf{weld},r})$
 - ➡ Vehicle Routing problem with stop times
 - Only one robot
 - \rightarrow minimize t_{travel}
 - ➡ Travelling Salesman Problem
- Reformulation as abstract (mathematical) problem enables us to use results and solutions previously encountered!
 - ➡ Know your examples!

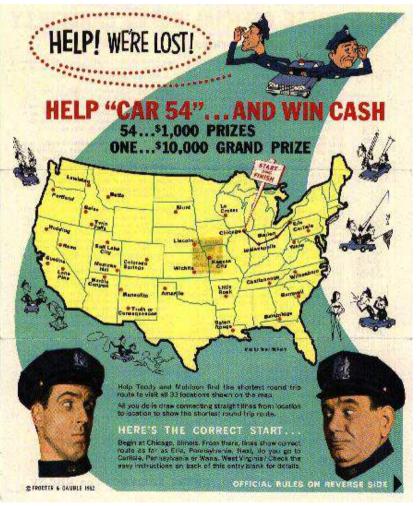
▷ Well-studied problem since the 20th century



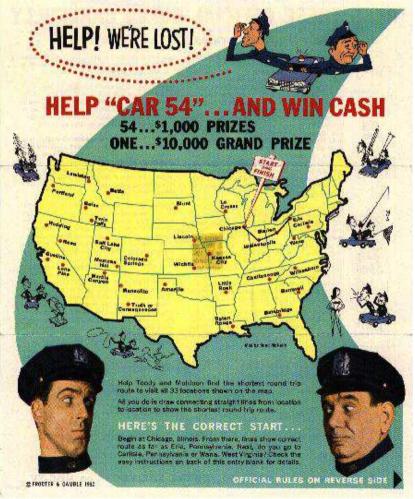
 \triangleleft

•••••

- \triangleright Well-studied problem since the 20th century
- Algorithms and solution approaches from different areas in optimization



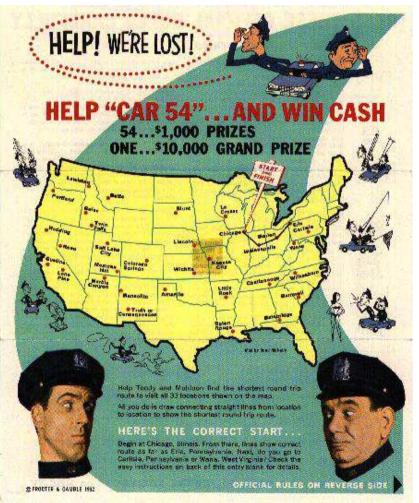
- \triangleright Well-studied problem since the 20th century
- Algorithms and solution approaches from different areas in optimization
- ▷ Typical problem in discrete optimization:



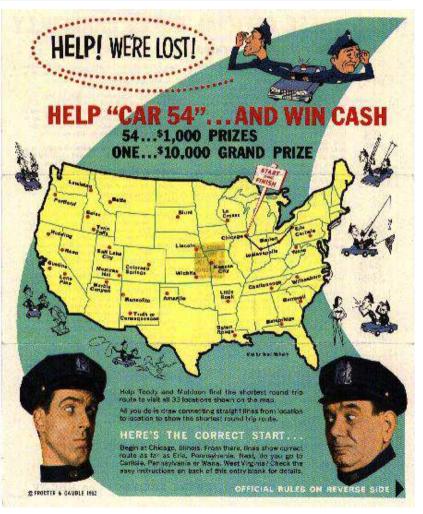
 \triangleleft

•••••

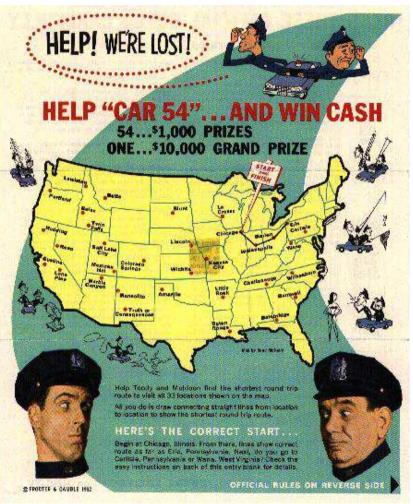
- \triangleright Well-studied problem since the 20th century
- Algorithms and solution approaches from different areas in optimization
- ▷ Typical problem in discrete optimization:
 - Combinatorial explosion (vast number of feasible solutions already for moderate input sizes)



- \triangleright Well-studied problem since the 20th century
- Algorithms and solution approaches from different areas in optimization
- ▷ Typical problem in discrete optimization:
 - Combinatorial explosion (vast number of feasible solutions already for moderate input sizes)
 - NP-complete (➡ P-vs-NP Problem)



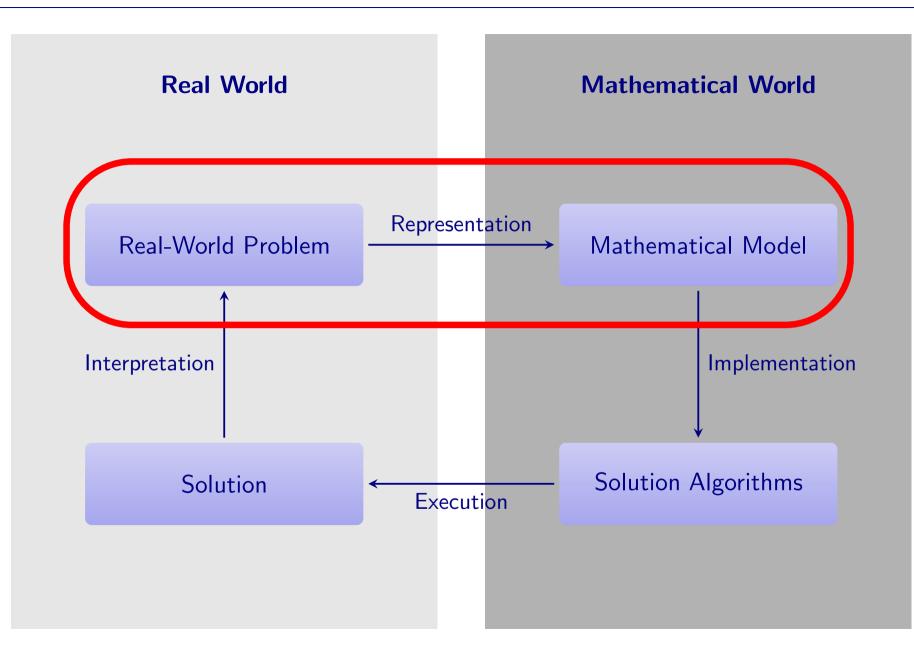
- Well-studied problem since the 20th century
- Algorithms and solution approaches from different areas in optimization
- ▷ Typical problem in discrete optimization:
 - Combinatorial explosion (vast number of feasible solutions already for moderate input sizes)
 - NP-complete (➡ P-vs-NP Problem)
 - Optimality of a given tour is hard to prove
 (⇒ Heuristics for suboptimal results)



- ▷ Models, Data and Algorithms
- ▷ Linear Optimization

 \triangleleft

- Mathematical Background: Polyhedra, Simplex-Algorithm
- ▷ (Mixed) Integer Programming
- ▷ Mathematical Background: Cuts, Branch & Bound
- Combinatorial Optimization
- ▷ Mathematical Background: Graphs, Algorithms
- ▷ Complexity Theory
- Nonlinear Optimization
- ▷ Scheduling
- ▷ Lot Sizing
- Multicriteria Optimization
- ⊳ Exam



 \triangleleft

•••••

Product	Beetle	Cabrio
Revenue	\$10000	\$20000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Product	Beetle	Cabrio
Revenue	\$10000	\$20000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg

 \triangleleft

Product	Beetle	Cabrio
Revenue	\$10000	\$20000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
- ➡ Question: How many cars of each type should be produced to maximize the profit?

	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
	5	6				
available capacities:			50	70	4500	

•••••

	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
	5	6	170	43	62	4400
available capacities:				50	70	4500

	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
	available capacities:			50	70	4500

	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
	4	7	180			
	available capacities:			50	70	4500

•••••

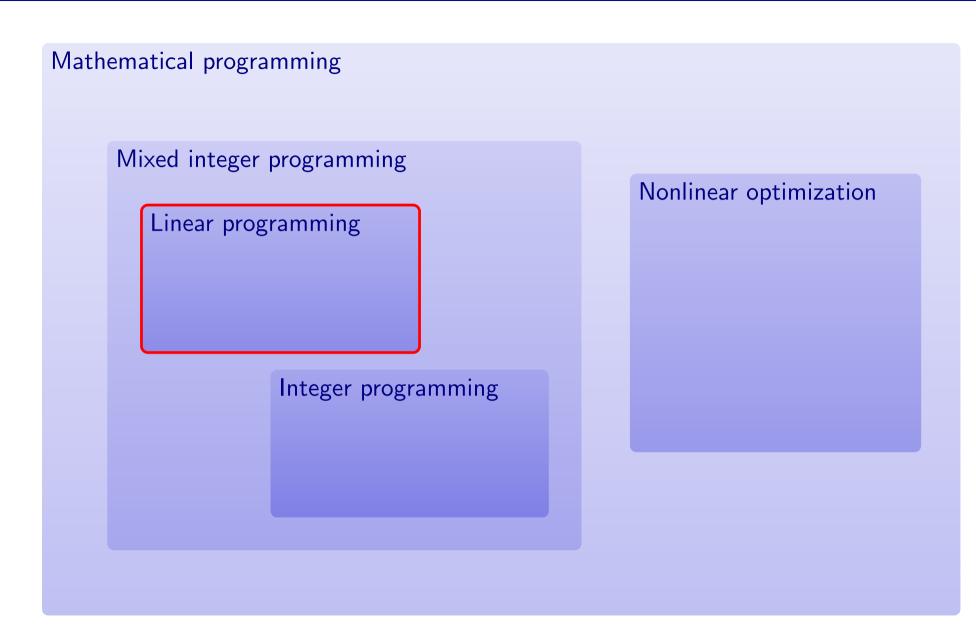
	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
another feasible solution	4	7	180	41	65	4400
	available capacities:			50	70	4500

	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
another feasible solution	4	7	180	41	65	4400
	2	9				
available capacities:				50	70	4500

	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
another feasible solution	4	7	180	41	65	4400
	2	9	200			
available capacities:				50	70	4500

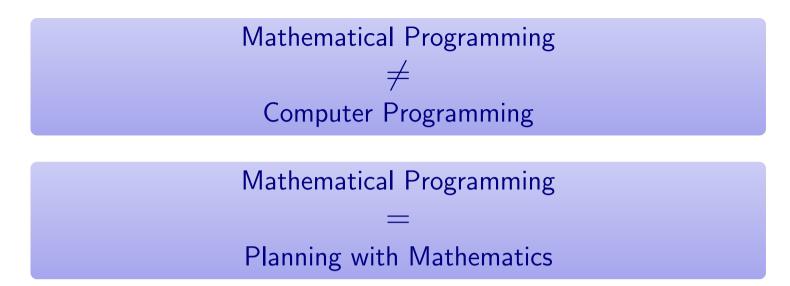
	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
another feasible solution	4	7	180	41	65	4400
infeasible solution	2	9	200	37	71	4400
	available capacities:			50	70	4500

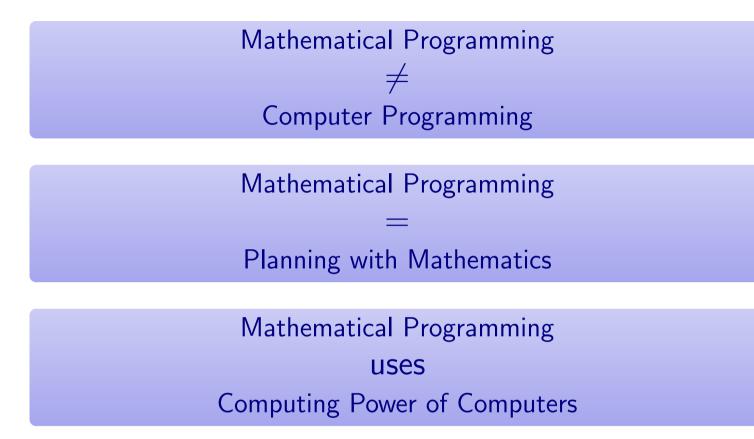
	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
another feasible solution	4	7	180	41	65	4400
infeasible solution	2	9	200	37	71	4400
optimal solution	0	10	200	30	70	4000
		available c	apacities:	50	70	4500



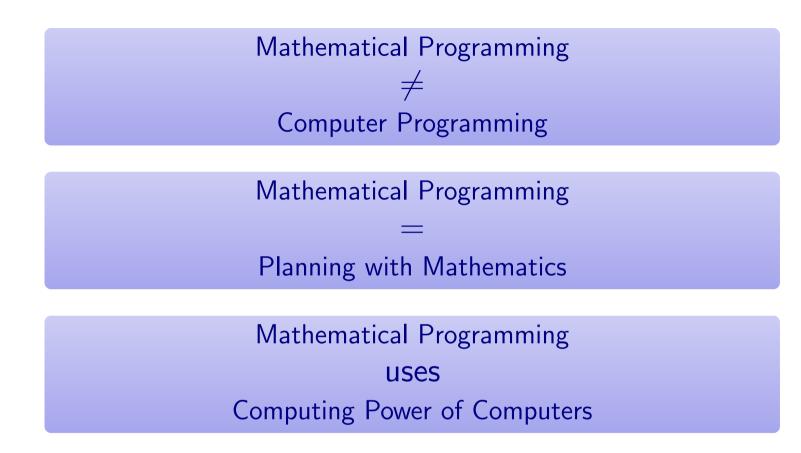
Mathematical Programming	
\neq	
Computer Programming	

 \triangleleft





 \triangleleft



Mathematical Programming always involves optimization (i.e. either minimization or maximization) of some quantity subject to certain restrictions concerning this quantity

(for example: products, cities, machines, types of raw material, ...)

(for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)

(for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)

Variables: Unknowns to be determined

(for example: number of items to produce, number of shops to open in a certain city, decision to buy a certain machine or not, amount of raw material to use, ...)

(for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)

Variables: Unknowns to be determined

(for example: number of items to produce, number of shops to open in a certain city, decision to buy a certain machine or not, amount of raw material to use, ...)

Constraints: Relationships that have to hold between variables and parameters (for example: maximal number of items that can be produced by a machine, minimal number of shops to open, budget for buying raw material, ...)

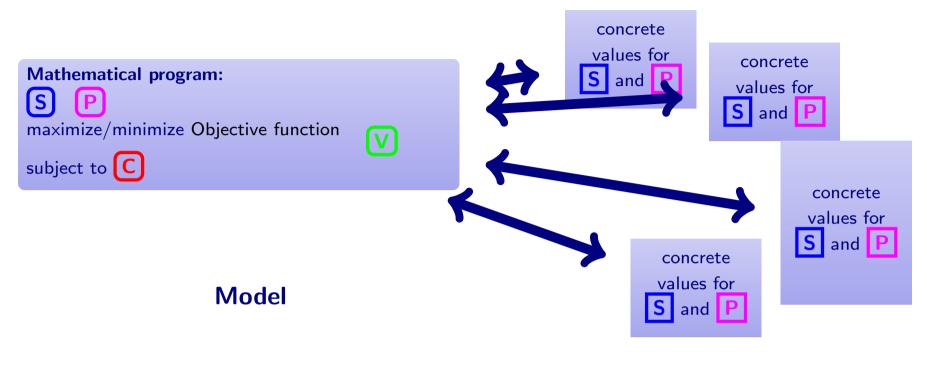
(for example: products, cities, machines, types of raw material, ...)

Parameters: Values specified for (combinations of) elements of the sets (for example: profits for products, demand for products, distances between cities, capacity of machines, prices of one unit of raw material, ...)

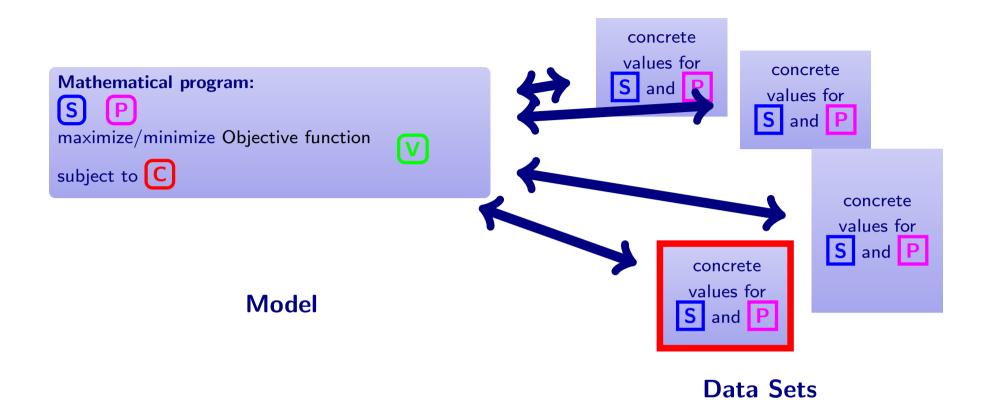
Variables: Unknowns to be determined

(for example: number of items to produce, number of shops to open in a certain city, decision to buy a certain machine or not, amount of raw material to use, ...)

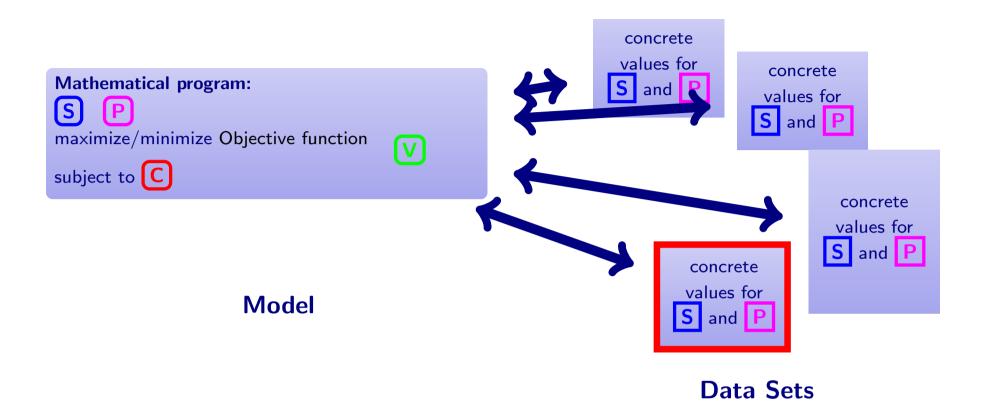
- **Constraints**: Relationships that have to hold between variables and parameters (for example: maximal number of items that can be produced by a machine, minimal number of shops to open, budget for buying raw material, ...)
- Mathematical Program: Collection of constraints and variables together with an Objective function to be maximized/minimized



Data Sets



▷ Input: Values for sets and parameters.



- ▷ Input: Values for sets and parameters.
- Output: Values for all variables such that the objective function value is maximal/minimal and the constraints are respected

▷ Production Planning in Automobile Industry

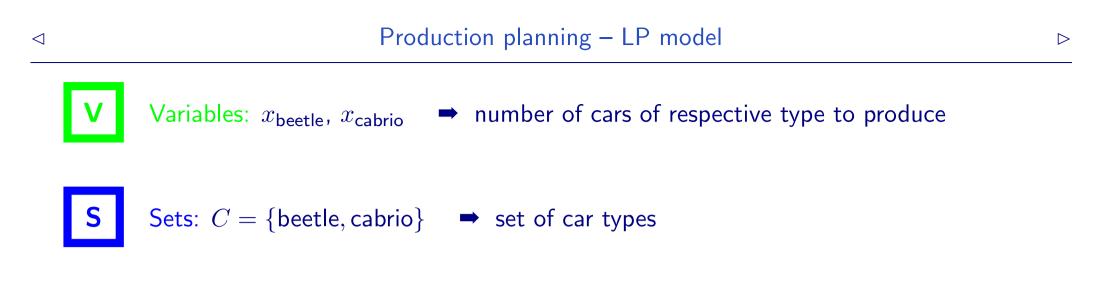
Product	Beetle	Cabrio
Revenue	\$10000	\$20000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
- ➡ Question: How many cars of each type should be produced to maximize the profit?

Variables: x_{beetle} , x_{cabrio}

number of cars of respective type to produce



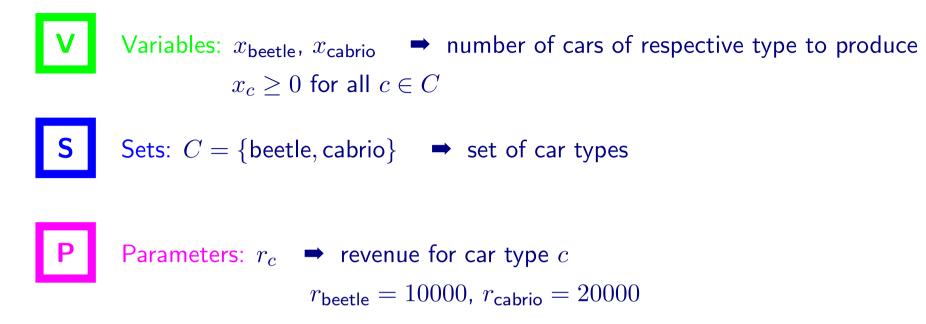
Variables: x_{beetle} , x_{cabrio} \implies number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$

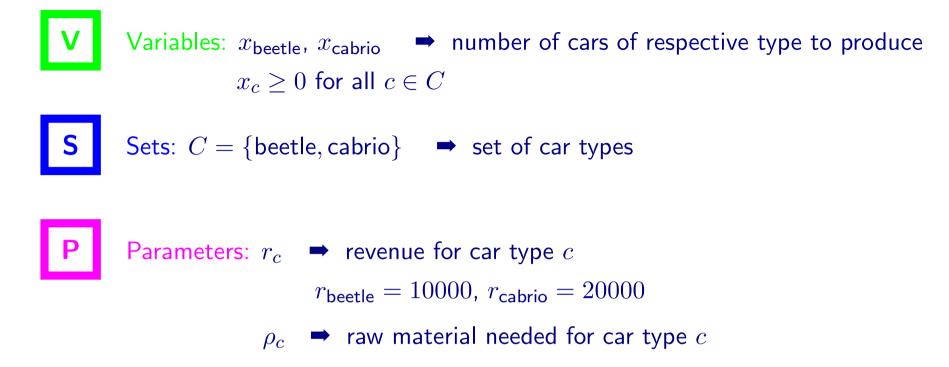
S	Sets: $C = \{ beetle, cabrio \}$	-	set of car types

Variables: x_{beetle} , x_{cabrio} \Rightarrow number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$

S	Sets: $C = \{ beetle, cabrio \}$	-	set of car types
---	----------------------------------	---	------------------

Parameters: $r_c \implies$ revenue for car type c





V Variables: x_{beetle} , x_{cabrio} \Rightarrow number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$
S Sets: $C = \{ \text{beetle}, \text{cabrio} \} \Rightarrow \text{set of car types}$
P Parameters: r_c \Rightarrow revenue for car type c $r_{\text{beetle}} = 10000, r_{\text{cabrio}} = 20000$
$ ho_c \implies$ raw material needed for car type c $ ho_{\text{beetle}} = 400, \ \rho_{\text{cabrio}} = 400$

V	Variables: x_{beetle} , x_{cabrio} \implies number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$
S	Sets: $C = \{ beetle, cabrio \} \Rightarrow set of car types$
Ρ	Parameters: r_c \Rightarrow revenue for car type c $r_{\text{beetle}} = 10000, r_{\text{cabrio}} = 20000$
	$ \rho_c \Rightarrow \text{raw material needed for car type } c $ $ \rho_{\text{beetle}} = 400, \ \rho_{\text{cabrio}} = 400 $
	$R \Rightarrow$ total raw material available ($R = 4500$)

V	Variables: x_{beetle} , x_{cabrio} \Rightarrow number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$
S	Sets: $C = \{\text{beetle}, \text{cabrio}\} \Rightarrow \text{set of car types}$ $D = \{\text{manufacturing accombly}\} \Rightarrow \text{set of departments}$
	$D = \{manufacturing, assembly\} \Rightarrow set of departments$
Р	Parameters: $r_c \implies$ revenue for car type c
	$r_{\sf beetle} = 10000$, $r_{\sf cabrio} = 20000$
	$\rho_c \implies$ raw material needed for car type c
	$\rho_{\rm beetle}=400$, $\rho_{\rm cabrio}=400$
	$R \rightarrow$ total raw material available ($R = 4500$)

V	Variables: x_{beetle} , x_{cabrio} \implies number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$
S	Sets: $C = \{ beetle, cabrio \} \Rightarrow set of car types$
	$D = \{manufacturing, assembly\} \Rightarrow set of departments$
Ρ	Parameters: r_c \Rightarrow revenue for car type c $r_{\text{beetle}} = 10000, r_{\text{cabrio}} = 20000$
	$ \rho_c \Rightarrow raw material needed for car type c $ $ \rho_{\text{beetle}} = 400, \rho_{\text{cabrio}} = 400 $
	$R \rightarrow$ total raw material available ($R = 4500$)
	$T_d \Longrightarrow time \ capacity \ for \ department \ d \in D$

V	Variables: x_{beetle} , x_{cabrio} \blacktriangleright number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$
S	Sets: $C = \{\text{beetle, cabrio}\} \implies \text{set of car types}$ $D = \{\text{manufacturing, assembly}\} \implies \text{set of departments}$
Ρ	Parameters: r_c → revenue for car type c $r_{\text{beetle}} = 10000, r_{\text{cabrio}} = 20000$ ρ_c → raw material needed for car type c $\rho_{\text{beetle}} = 400, \rho_{\text{cabrio}} = 400$ R → total raw material available ($R = 4500$) T_d → time capacity for department $d \in D$ $T_{\text{manufacturing}} = 50, T_{\text{assembly}} = 70$

V	Variables: x_{beetle} , x_{cabrio} \blacktriangleright number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$
S	Sets: $C = \{ beetle, cabrio \} \Rightarrow set of car types$
	$D = \{manufacturing, assembly\} \Rightarrow set of departments$
Р	Parameters: $r_c \implies$ revenue for car type c
	$r_{\rm beetle} = 10000 \text{, } r_{\rm cabrio} = 20000$
	$ ho_c$ \implies raw material needed for car type c
	$ ho_{\text{beetle}}=400$, $ ho_{\text{cabrio}}=400$
	$R \rightarrow$ total raw material available ($R = 4500$)
	$T_d ~ ightarrow$ time capacity for department $d \in D$
	$T_{\rm manufacturing}=50$, $T_{\rm assembly}=70$
	$t_{c,d}$ \Rightarrow time needed for car type c in department d

V	Variables: x_{beetle} , x_{cabrio} \Rightarrow number of cars of respective type to produce $x_c \ge 0$ for all $c \in C$
S	Sets: $C = \{ beetle, cabrio \} \Rightarrow set of car types$
	$D = \{manufacturing, assembly\} \Rightarrow set of departments$
Ρ	Parameters: r_c \Rightarrow revenue for car type c
	$r_{beetle} = 10000$, $r_{cabrio} = 20000$
	$ ho_c$ $ ightarrow$ raw material needed for car type c
	$\rho_{\rm beetle}=400$, $\rho_{\rm cabrio}=400$
	$R \Rightarrow$ total raw material available ($R = 4500$)
	$T_d ightarrow \ time \ capacity \ for \ department \ d \in D$
	$T_{\rm manufacturing} = 50$, $T_{\rm assembly} = 70$
	$t_{c,d}$ \Rightarrow time needed for car type c in department d
	$t_{ m beetle,manufacturing}=5$, $t_{ m cabrio,manufacturing}=3$
	$t_{\sf beetle, assembly} = 4$, $t_{\sf cabrio, assembly} = 7$
- E	

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

Constraints:

(total raw material available)

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

Constraints:

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

Constraints:

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$ (time spent in each department)

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

Constraints:

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$ (time spent in each department) $t_{\text{beetle},d} x_{\text{beetle}} + t_{\text{cabrio},d} x_{\text{cabrio}} \leq T_d$ for all $d \in D$

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

Constraints:

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$ (time spent in each department) $t_{\text{beetle},d} x_{\text{beetle}} + t_{\text{cabrio},d} x_{\text{cabrio}} \leq T_d$ for all $d \in D$ (non-negativity of variables)

▷ Objective function:

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

Constraints:

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$ (time spent in each department) $t_{\text{beetle},d} x_{\text{beetle}} + t_{\text{cabrio},d} x_{\text{cabrio}} \leq T_d$ for all $d \in D$ (non-negativity of variables) $x_c \geq 0$ for all $c \in C$

▷ Objective function:

maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

Constraints:

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$ (time spent in each department) $t_{\text{beetle},d} x_{\text{beetle}} + t_{\text{cabrio},d} x_{\text{cabrio}} \leq T_d$ for all $d \in D$ (non-negativity of variables) $x_c \geq 0$ for all $c \in C$

}

maximize	(total revenue)			
subject to	(total raw material)	$\sum_{c \in C}^{c \in C} \rho_c x_c$	\leq	R
	(time in departments)	$\sum_{c \in C} t_{c,d} x_c$	\leq	T_d for all $d \in D$
	(non-negativity	_	\geq	$0 \ \text{ for all } c \in C$

maximize	(total revenue)	$\sum r_c \cdot x_c$		Objective	
subject to	(total raw material)	$\sum_{c \in C}^{c \in C} \rho_c x_c$	\leq	R	
	(time in departments)	$\sum_{c \in C} t_{c,d} x_c$	\leq	T_d for all $d \in D$	
	(non-negativity	$() x_c$	\geq	$0 \ \text{ for all } c \in C$	

	maximize	(total revenue)	$\sum_{c} r_c \cdot x_c$	Objective
С	subject to	(total raw material)	$\sum_{c \in C}^{c \in C} \rho_c x_c \leq$	R
		(time in departments)	$\sum_{c \in C} t_{c,d} x_c \leq$	T_d for all $d \in D$
		(non-negativity	_	$0 \ \text{ for all } c \in C$

	maximize	(total revenue)	$\sum r_c \cdot x_c$	Objective	
С	subject to	(total raw material)	$\sum_{c \in C}^{c \in C} \rho_c x_c \leq$	R	
		(time in departments)		T_d for all $d \in D$	
	V	(non-negativity	$\begin{array}{c} c \in C \\ () \\ x_c \\ \end{array} \geq$	$0 \hspace{0.1 in}$ for all $c \in C$	

 \triangleleft

	maximize	(total revenue)	$\sum r_c \cdot x_c$	Objective
С	subject to	(total raw material)	$\sum_{c \in C}^{c \in C} \rho_c x_c \leq$	R
		(time in departments)		T_d for all $d \in D$
	V	(non-negativity	$c \in C$ () $x_c \geq$	$0 \ \text{ for all } c \in C$

S

•••••

 \triangleleft

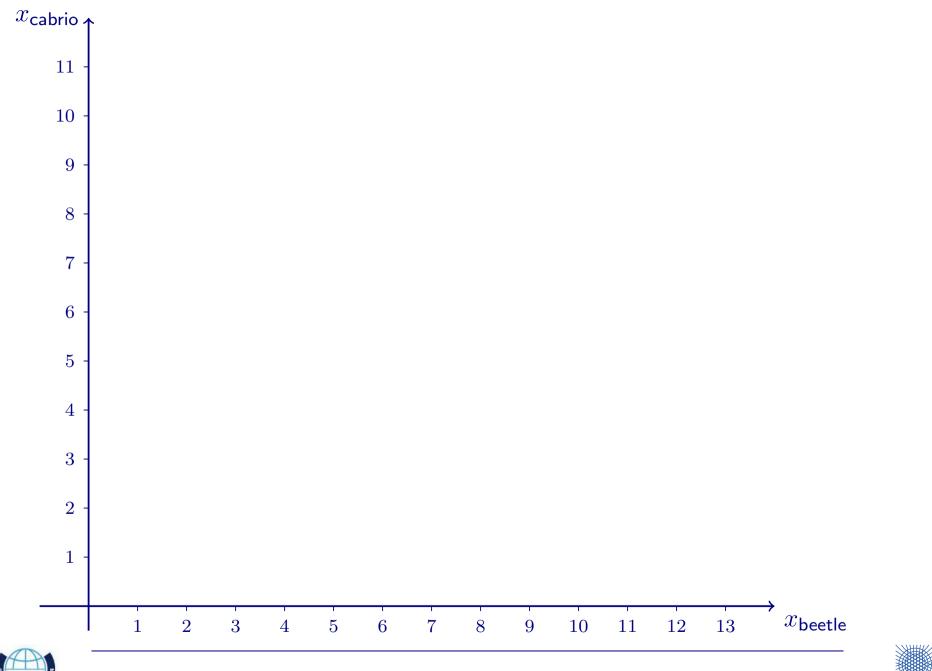
	maximize	(total revenue)	$\sum r_c \cdot x_c$	Objective
С	subject to	(total raw material)	$\sum_{c \in C}^{c \in C} \rho_c x_c \leq$	R
		(time in departments)		T_d for all $d \in D$
	V	(non-negativity	$c \in C$ () $x_c \geq$	$0 \ \text{ for all } c \in C$

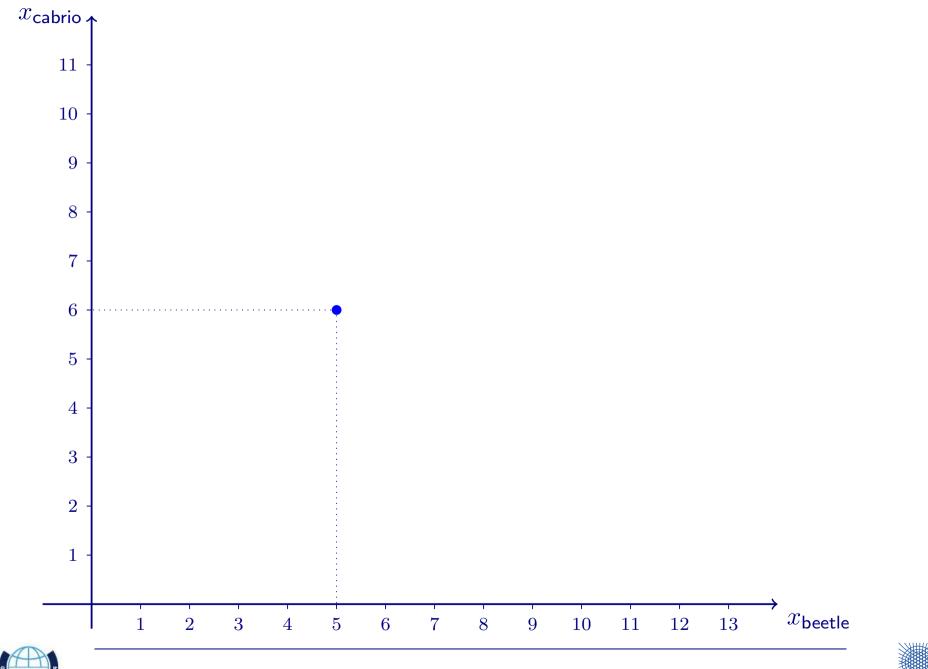
▷ Data Set: set of car types:
$$C = \{\text{beetle, cabrio}\}\$$

set of department: $D = \{\text{manufacturing, assembly}\}\$
 $r_{\text{beetle}} = 10000, r_{\text{cabrio}} = 20000$
 $\rho_{\text{beetle}} = 400, \rho_{\text{cabrio}} = 400, \quad R = 4500$
 $T_{\text{manufacturing}} = 50, T_{\text{assembly}} = 70$
 $t_{\text{beetle,manufacturing}} = 5, t_{\text{cabrio,manufacturing}} = 3$
 $t_{\text{beetle,assembly}} = 4, t_{\text{cabrio,assembly}} = 7$

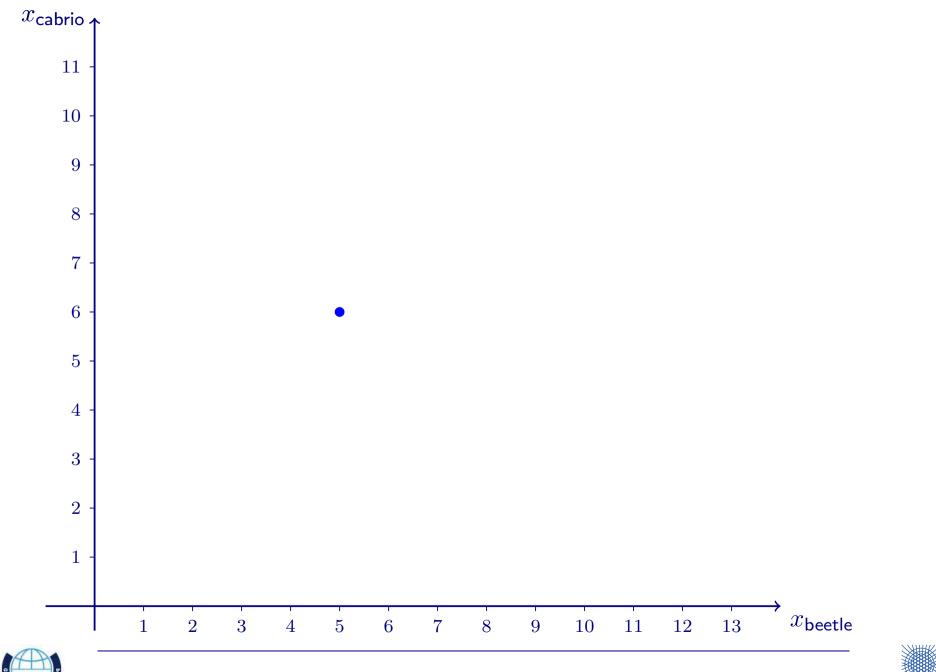
•••••

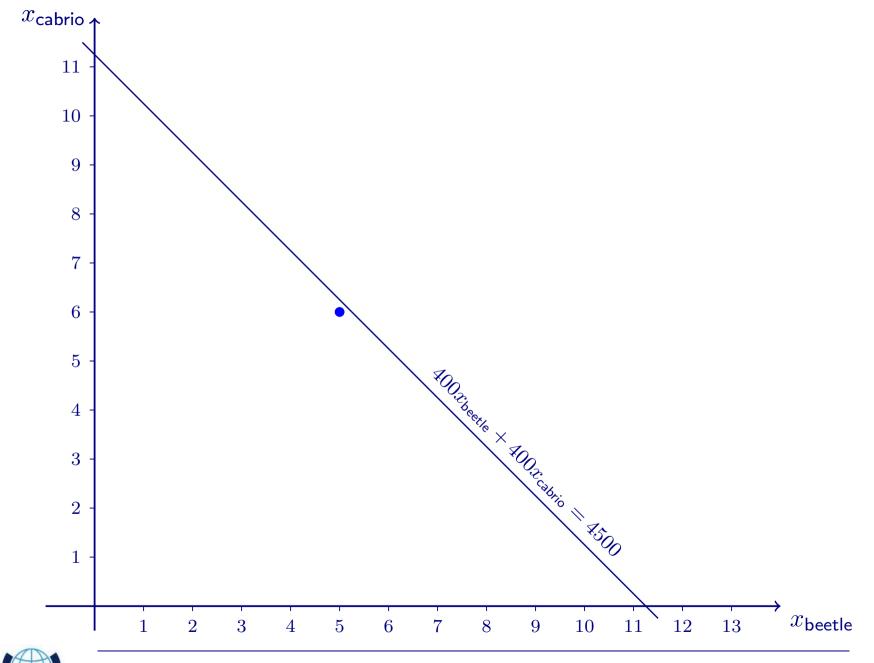
	# beetles	# cabrios	revenue	manufact. h	assembly h	raw material
feasible solution	5	6	170	43	62	4400
another feasible solution	4	7	180	41	65	4400
infeasible solution	2	9	200	37	71	4400
optimal solution	0	10	200	30	70	4000
	available capacities:			50	70	4500

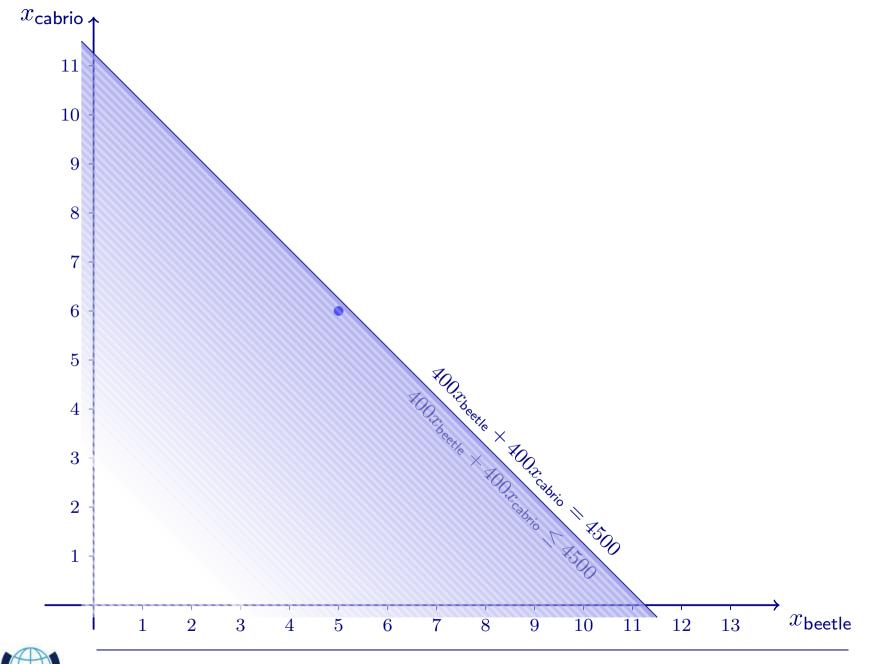


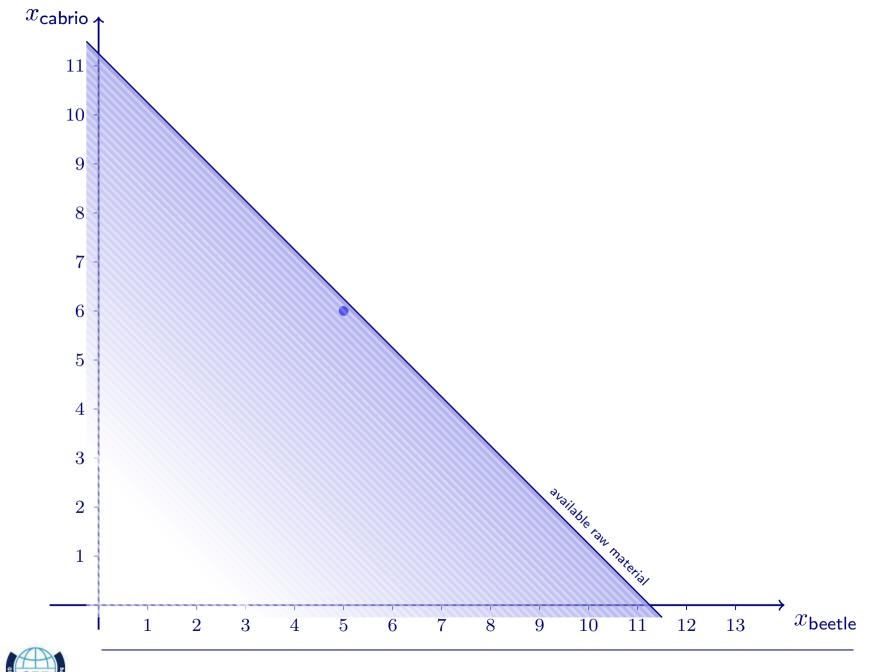


DD

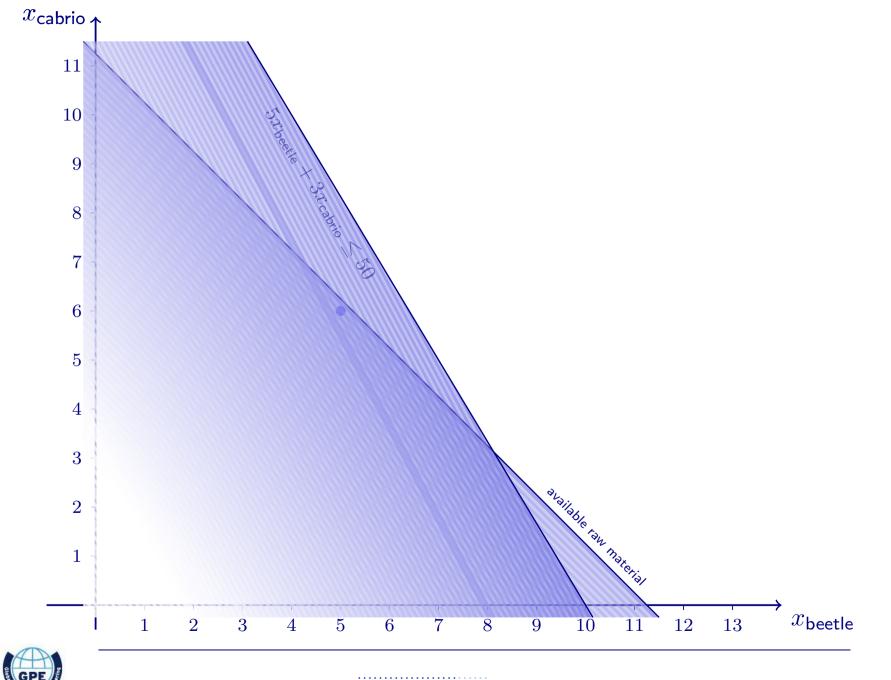


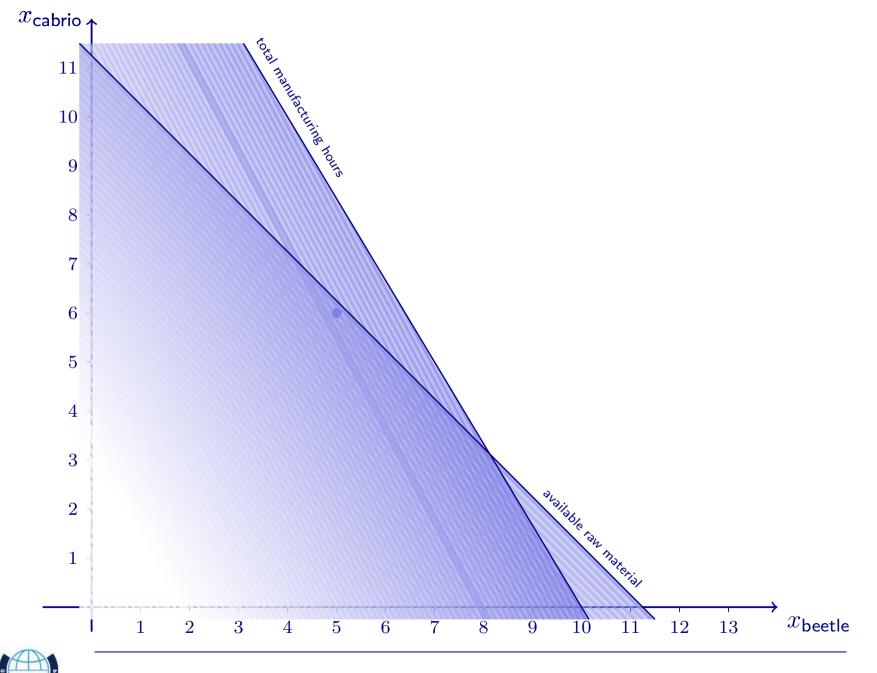




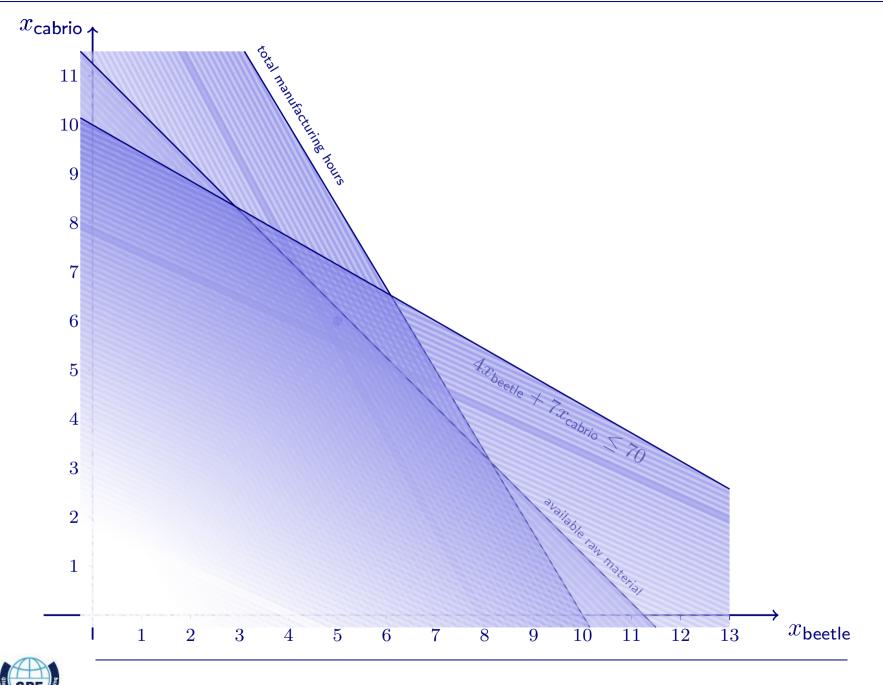


DD

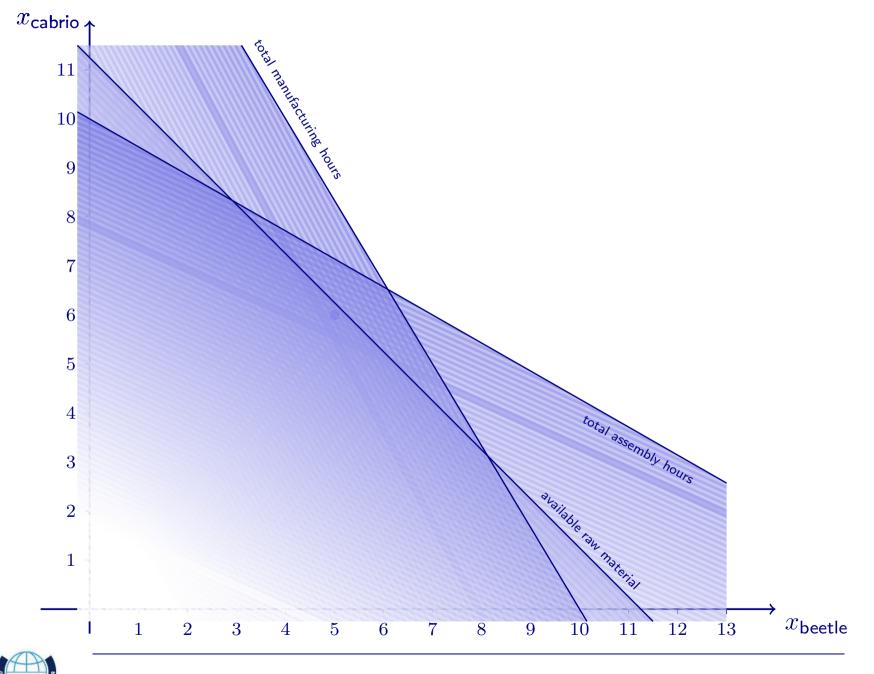




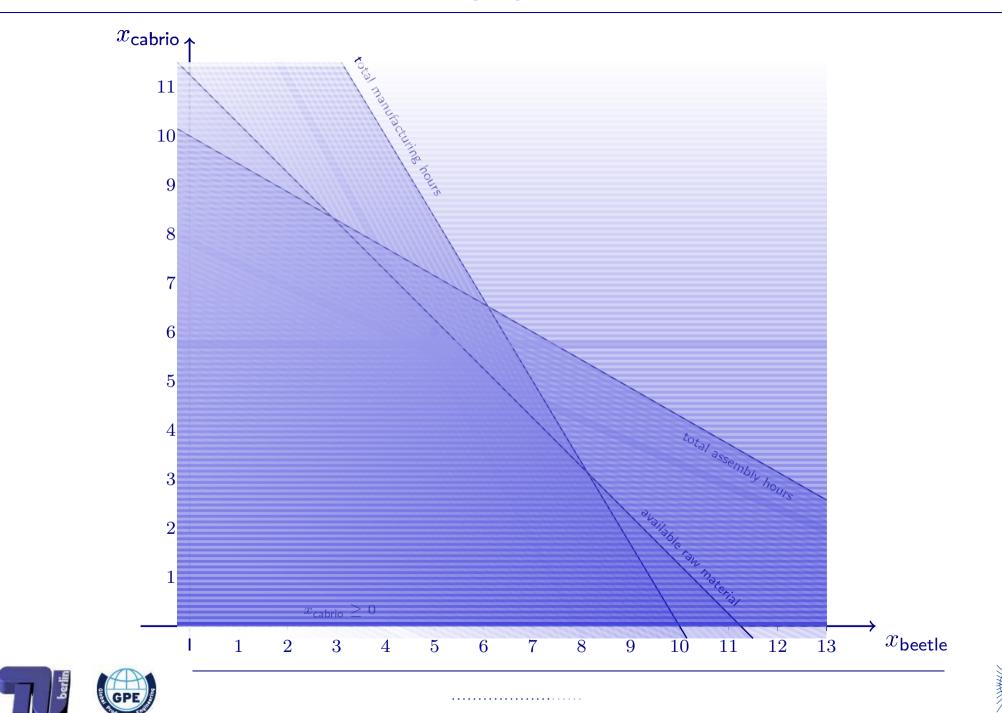
DD

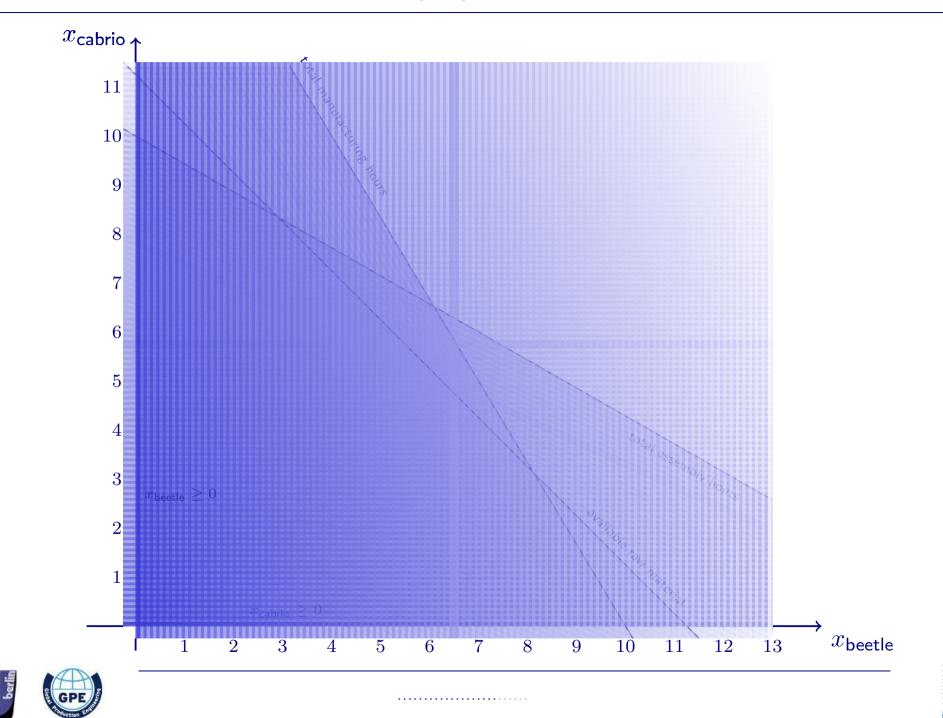


•••••

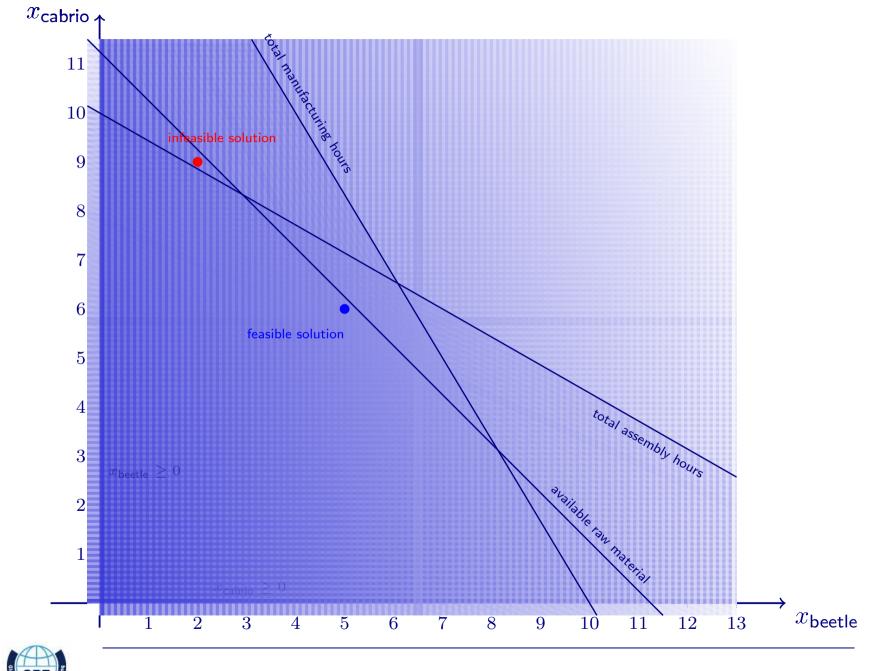


•••••

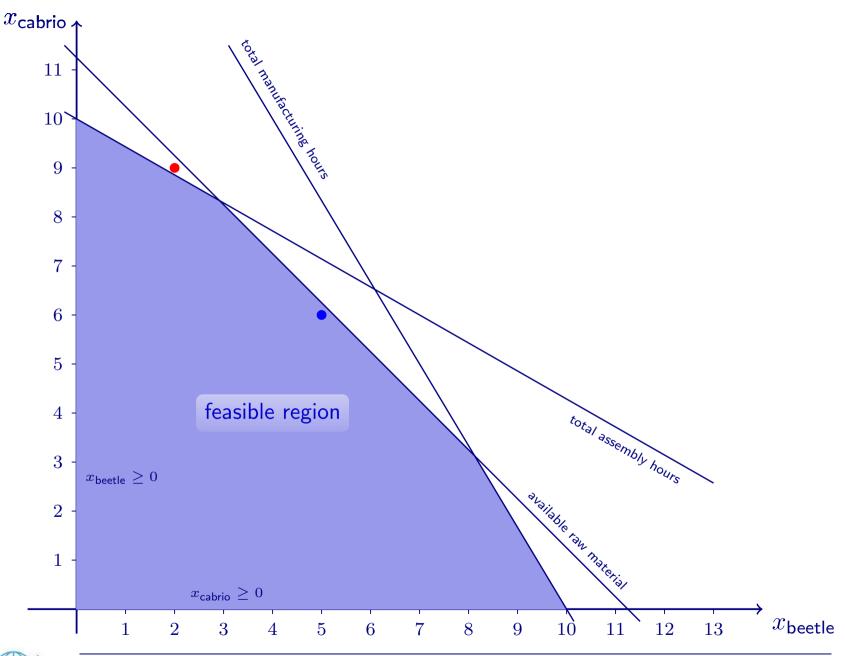


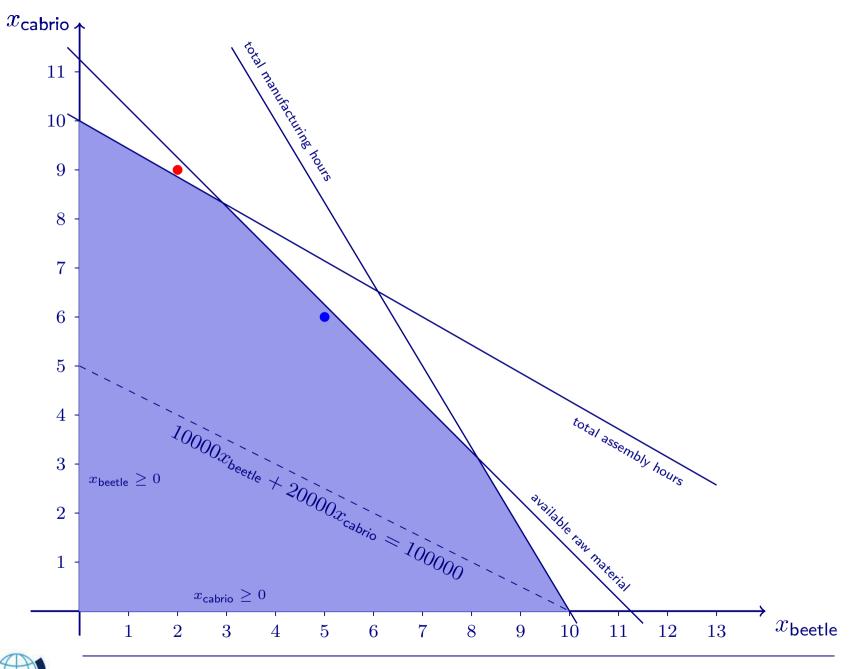


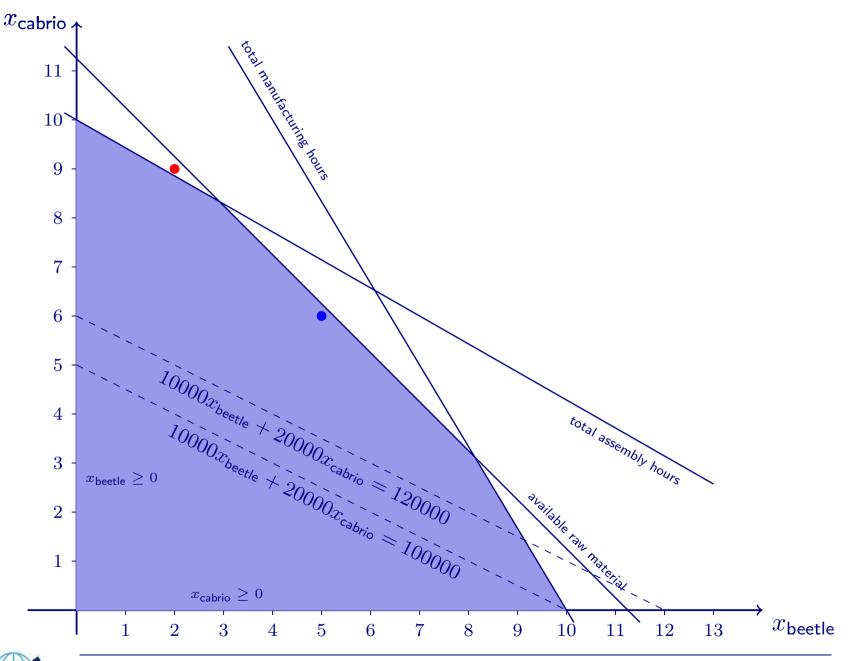
В

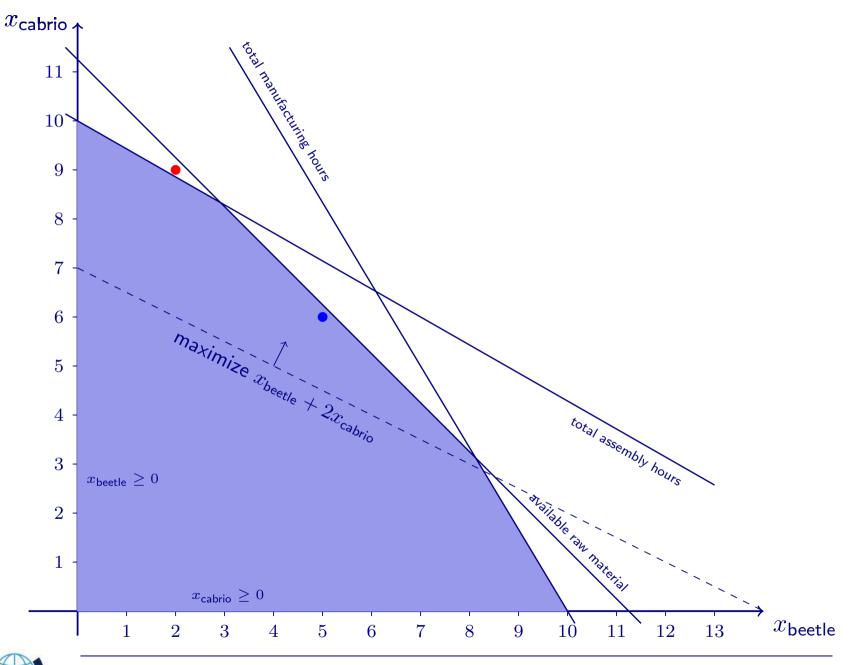


 \triangleleft

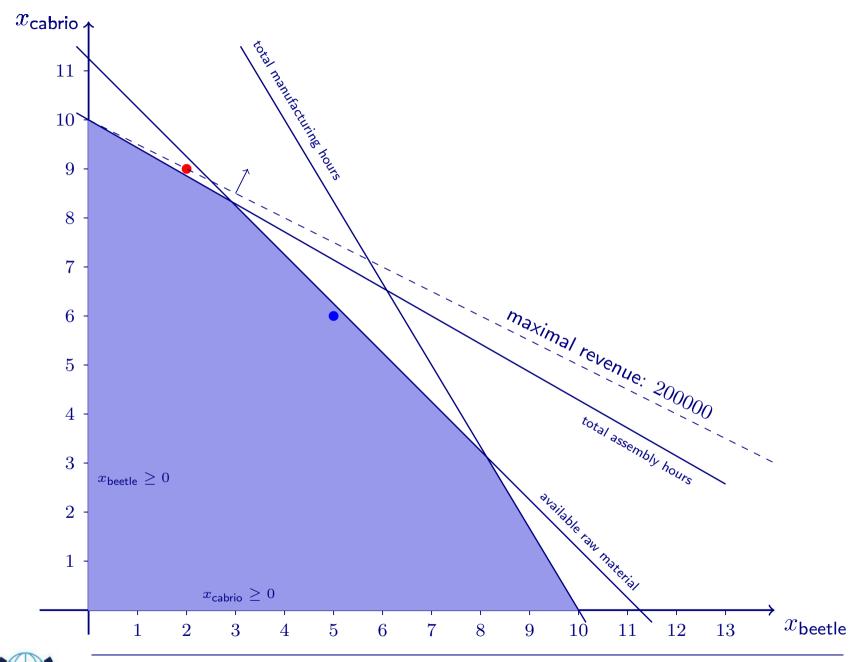


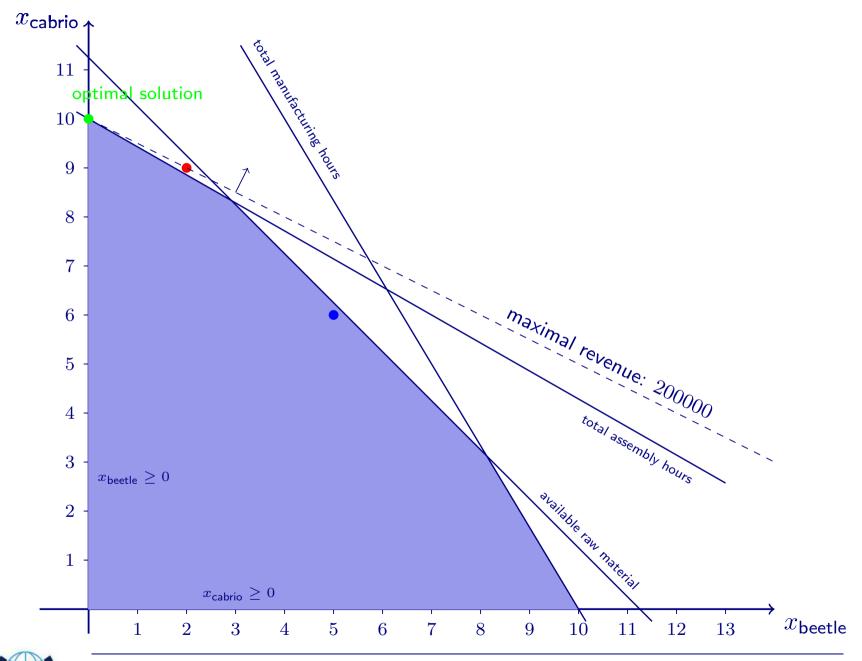






B





•••••

▷ Feasible solution:

All variable values satisfy all constraints

➡ Point in the feasible region

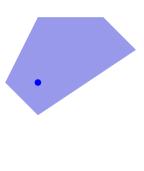
▷ Feasible solution:

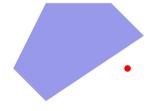
All variable values satisfy all constraints

- ➡ Point in the feasible region
- ▷ Infeasible solution:

The variable values violate at least one constraint

➡ Point outside the feasible region





▷ Feasible solution:

All variable values satisfy all constraints

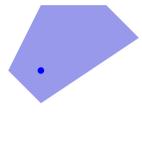
- ➡ Point in the feasible region
- ▷ Infeasible solution:

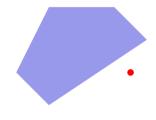
The variable values violate at least one constraint

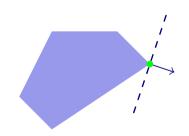
- ➡ Point outside the feasible region
- ▷ Optimal solution:

Feasible solution such that no other feasible solution has a better objective value

Point in the feasible region, on a line h (more generally: a hyperplane) such that the feasible region is completely on one side of h

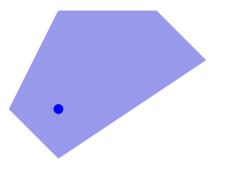






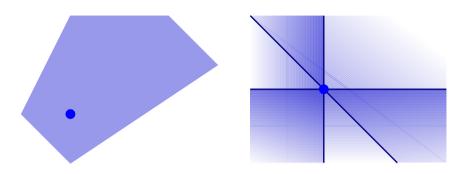
...feasible

if there is at least one feasible solution



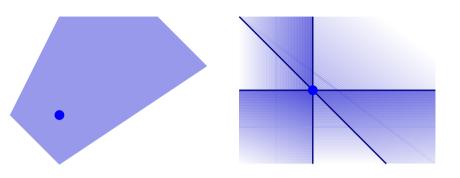
...feasible

if there is at least one feasible solution

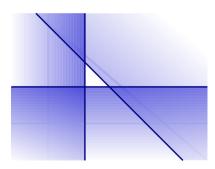


...feasible

if there is at least one feasible solution



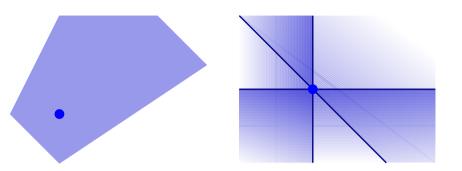
- ...infeasible
- if there is no feasible solution
- ➡ no optimum



▷ A mathematical program is...

...feasible

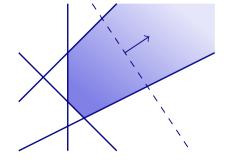
if there is at least one feasible solution

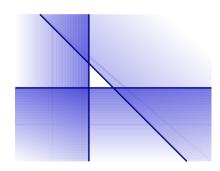


- ...infeasible
- if there is no feasible solution
- ➡ no optimum
- ...unbounded

if there are feasible solutions with objective function value arbitrarily large (for maximizing), or small (for minimizing) respectively

➡ no optimum



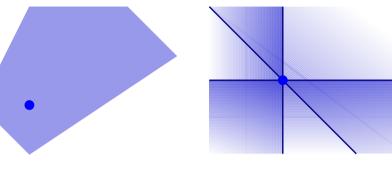


▷ A mathematical program is...

...feasible

 \triangleleft

if there is at least one feasible solution



...infeasible

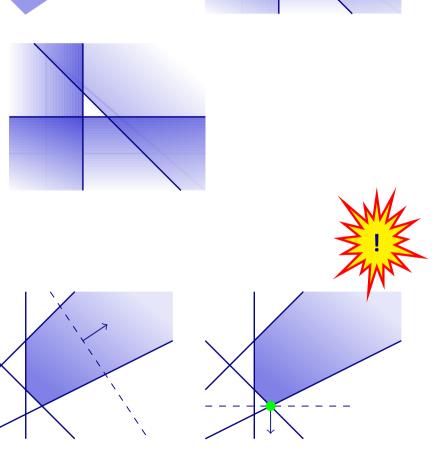
if there is no feasible solution

➡ no optimum

...unbounded

if there are feasible solutions with objective function value arbitrarily large (for maximizing), or small (for minimizing) respectively

➡ no optimum



➡ Which decisions have to be made?

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?
 - ➡ Which values define these objects and are relevant?

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?
 - ➡ Which values define these objects and are relevant?
- 3. Identify objective function

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?
 - ➡ Which values define these objects and are relevant?
- 3. Identify objective function
 - ➡ Which quantity has to be optimized, and in which direction: minimize or maximize?

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?
 - ➡ Which values define these objects and are relevant?
- 3. Identify objective function
 - ➡ Which quantity has to be optimized, and in which direction: minimize or maximize?
 - How can this quantity be written in terms of the variables and parameters?

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?
 - ➡ Which values define these objects and are relevant?
- 3. Identify objective function
 - ➡ Which quantity has to be optimized, and in which direction: minimize or maximize?
 - How can this quantity be written in terms of the variables and parameters?

4. Identify constraints

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?
 - ➡ Which values define these objects and are relevant?
- 3. Identify objective function
 - ➡ Which quantity has to be optimized, and in which direction: minimize or maximize?
 - How can this quantity be written in terms of the variables and parameters?
- 4. Identify constraints
 - ➡ Which restrictions have to be taken into account?

- ➡ Which decisions have to be made?
- ➡ In which numbers are they best represented?
- 2. Identify sets and parameters
 - ➡ Which objects influence the problem?
 - ➡ Which values define these objects and are relevant?
- 3. Identify objective function
 - ➡ Which quantity has to be optimized, and in which direction: minimize or maximize?
 - How can this quantity be written in terms of the variables and parameters?

4. Identify constraints

- ➡ Which restrictions have to be taken into account?
- ➡ How can these restrictions be expressed in terms of variables and parameters?

▷ Linear functions

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)
 - linear function $(LHS) \ge value (RHS)$

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)
 - linear function $(LHS) \ge value (RHS)$
 - ➡ Linear equations

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)
 - linear function (LHS) \geq value (RHS)
 - ➡ Linear equations
 - linear function (LHS) = value (RHS)

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)
 - linear function (LHS) \geq value (RHS)
 - ➡ Linear equations
 - linear function (LHS) = value (RHS)
 - Bounds on variables

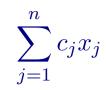
▷ Linear functions

 \triangleleft

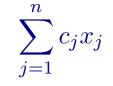
- ➡ Sum of terms of the form parameter · variable
- → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)
 - linear function (LHS) \geq value (RHS)
 - ➡ Linear equations
 - linear function (LHS) = value (RHS)
 - Bounds on variables
 - one variable \leq value (upper bound)

LHS: left-hand side

- ▷ Linear functions
 - ➡ Sum of terms of the form parameter · variable
 - → No higher-order or function terms of variables like: x^2 , $x \cdot y$, $x_1 y_4^5 z_8^2$, 3^x , $\log x$, \sqrt{x}
- ▷ Types of linear constraints:
 - ➡ Linear inequalities
 - linear function (LHS) \leq value (RHS)
 - linear function (LHS) \geq value (RHS)
 - ➡ Linear equations
 - linear function (LHS) = value (RHS)
 - Bounds on variables
 - one variable \leq value (upper bound)
 - one variable
 value (lower bound)

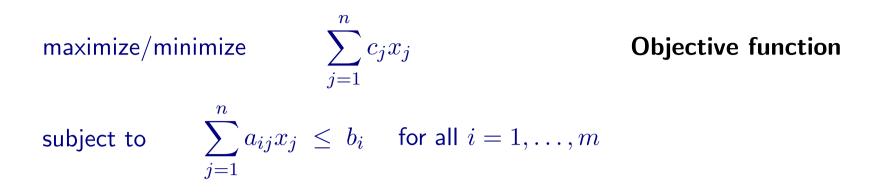


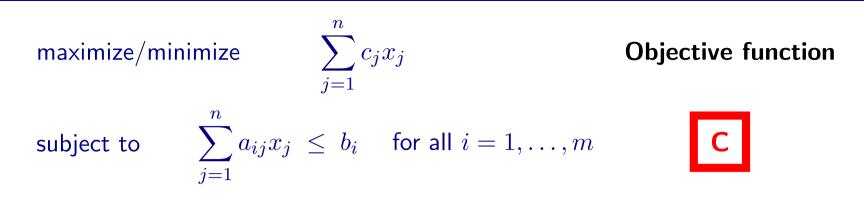
maximize/minimize

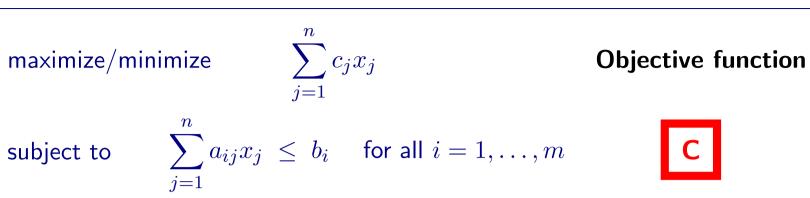


Objective function

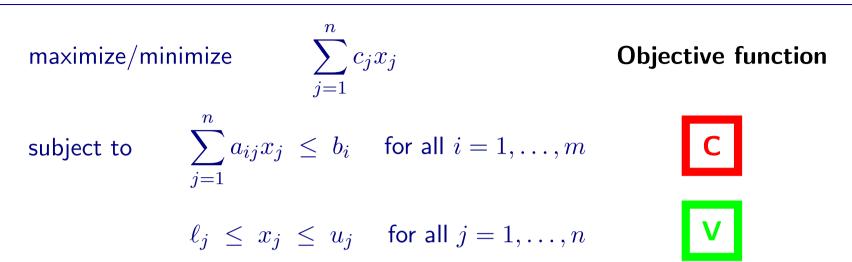
 \triangleleft

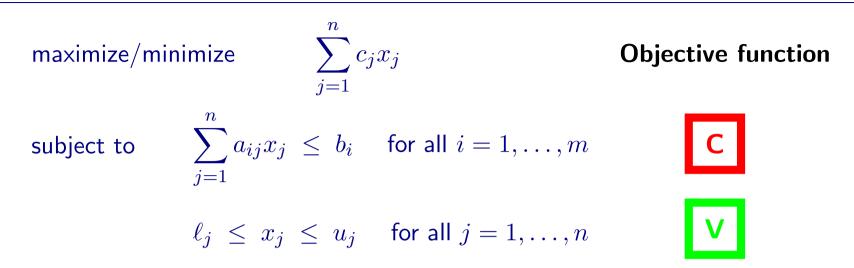




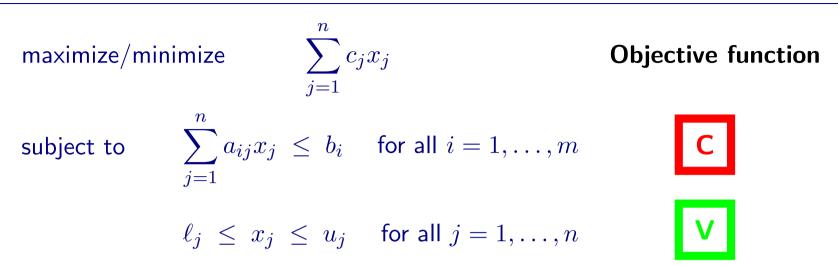


$$\ell_j \leq x_j \leq u_j$$
 for all $j = 1, \ldots, n$





 \rightarrow *n* variables, *m* constraints



- \rightarrow *n* variables, *m* constraints
- → (c_1, \ldots, c_n) is the objective function vector

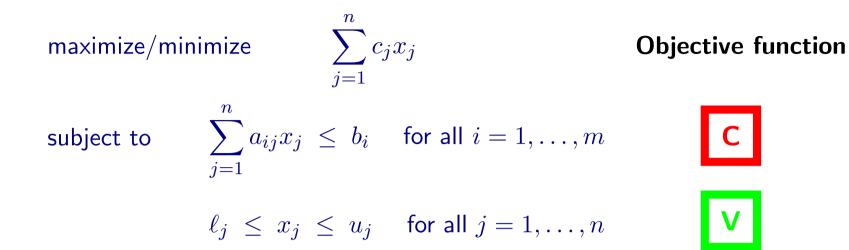
maximize/minimize

subject to $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$ for all $i = 1, \dots, m$

j=1

$$\ell_j \leq x_j \leq u_j \quad \text{ for all } j = 1, \dots, n$$

- \rightarrow *n* variables, *m* constraints
- \rightarrow (c_1, \ldots, c_n) is the objective function vector
- \rightarrow (b_1, \ldots, b_m) is the right-hand side vector

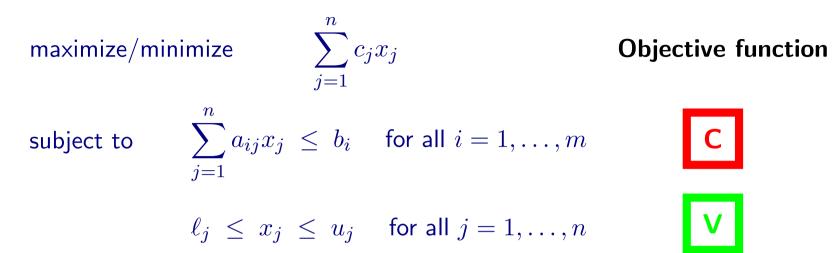


- \rightarrow *n* variables, *m* constraints
- ⇒ (c_1, \ldots, c_n) is the objective function vector
- ⇒ (b_1, \ldots, b_m) is the right-hand side vector

$$\bullet \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array}\right)$$
is

is the constraints matrix

 \triangleleft



- \rightarrow *n* variables, *m* constraints
- → (c_1, \ldots, c_n) is the objective function vector
- ⇒ (b_1, \ldots, b_m) is the right-hand side vector

$$\Rightarrow \left(\begin{array}{cccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array}\right) \text{ is the constraints matrix}$$

 \blacktriangleright Some of the lower bounds ℓ_j could be $-\infty$, some of the upper bounds u_j could be $+\infty$

- ▷ Models, Data and Algorithms
- ▷ Linear Optimization
- Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling; Mathematical Background: Branch & Bound
- ▷ Branch & Bound, Cutting Planes; More Examples; Combinatorial Optimization
- Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ Complexity Theory
- Nonlinear Optimization
- \triangleright Scheduling
- ▷ Lot Sizing
- Multicriteria Optimization
- \triangleright Oral exam

