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� Standard form of LPs �

maximize/minimize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

ℓj ≤ xj ≤ uj for all j = 1, . . . , n
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maximize/minimize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

ℓj ≤ xj ≤ uj for all j = 1, . . . , n

General form

of LPs

➡ Every LP can be written in the following standard form :

maximize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

➡ NOTE: • Every LHS and the objective are linear functions!

• Every constraint is a ≤-constraint!
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➡ there is always a vertex of the

feasible region which is optimal
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� Basic solutions (the 2-dimensional case) �

� Solutions of a system of 2 linear equations given by constraints are called

basic solutions

feasible basic solution

infeasible basic solution

� Feasible basic solutions are exactly the vertices of the feasible region
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� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

• There is always a vertex which is optimal (if there is an optimum at all)

� Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the

objective vector until an optimal vertex is reached

➡ Details:
How to get to a

neighbouring

vertex?

How to realise

that the optimum

is reached?

What if

there is no

optimum?

Or no feasible

solution at all?!
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� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

� Bad Pivot rules may lead to inefficient behaviour

or even cycling (with degenerate problems)

� Numerical Problems: Computers can only compute with limited precision

➡ May lead to unprecise solution values, or even completely wrong solutions, or also

cycling! ➡ Use numerically stable computations!
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� Dual simplex algorithm �

� A basic solution is primal feasible if is satisfies all constraints

� A (primal feasible) basic solution is optimal if there is no neighbouring (primal

feasible) basic solution with a better objective

� Dual feasible basic solutions have objective value at least as good as that of an

optimal solution (but are not necessarily primal feasible)

(Primal) Simplex Algorithm: Step from primal feasible

solution to neighbouring primal feasible solution in direction

of the objective until an optimal solution is reached

Dual Simplex Algorithm: Step from dual feasible solution

to neighbouring dual feasible solution until a primal feasible

solution is reached (which is then also optimal!)

� Dual simplex seems to be much more efficient (on average on real-world problems)!
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� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

➡ theoretically fast (polynomial), but practically useless

� Interior Point Methods

➡ Barrier Method (Karmarkar, 1984)

➡ theoretically and practically fast

➡ used for large-scale LPs
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� Progress in LP solving �

� LP solving in 1947*:

Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was

Laderman’s solution (see Dantzig 1963) of Stigler’s (1945) diet problem. This LP had nine

constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators
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Laderman’s solution (see Dantzig 1963) of Stigler’s (1945) diet problem. This LP had nine

constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators

for an estimated total of 120 man-days were needed to carry out the computations.

*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3–15

� Improvements due to computer power (1987–2000)*:

Sun 3/50 vs Pentium 4, 1.7 GHz ➡ speedup factor 800

� Improvements due to algorithms (1987–2000)*:

primal simplex 1988 vs primal/dual/barrier 2000 ➡ speedup factor 2360

➡ Total speedup: ≈ 1900000 times (1987–2000)

� Conclusion (as of 2002)*:

A model that might have taken a year to solve 10 years ago can now solve in less than 30

seconds.
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