Mathematical Tools
 for Engineering and Management

Lecture 3

2 Nov 2011
$\left(\frac{\text { GPE }}{(G)}\right.$
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright (Mixed) Integer Programming
\triangleright Mathematical Background: Cuts, Branch \& Bound
\triangleright Combinatorial Optimization
\triangleright Mathematical Background: Graphs, Algorithms
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization

- Exam
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right):$

$$
\begin{aligned}
& \text { maximize/minimize } \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m \\
& \\
& \ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=1, \ldots, n
\end{aligned}
$$

General form of LPs

$$
\begin{aligned}
& \text { maximize/minimize } \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m \\
& \qquad \ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=1, \ldots, n
\end{aligned}
$$

General form

 of LPs\Rightarrow Every LP can be written in the following standard form :
\qquad

$$
\begin{aligned}
& \text { maximize/minimize } \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m \\
& \\
& \ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=1, \ldots, n
\end{aligned}
$$

General form

 of LPs\Rightarrow Every LP can be written in the following standard form

$$
\begin{array}{cc}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m
\end{array}
$$

$$
\begin{aligned}
& \text { maximize/minimize } \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m \\
& \qquad \ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=1, \ldots, n
\end{aligned}
$$

General form of LPs
\Rightarrow Every LP can be written in the following standard form

$$
\begin{array}{lc}
\text { maximize } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m
\end{array}
$$

\Rightarrow NOTE: - Every LHS and the objective are linear functions!

- Every constraint is a \leq-constraint!

7 CR

E
$\triangleright \quad \mathrm{LP}$ with 2 variables

- LP with 2 variables
\Rightarrow Vertex is the intersection of 2 lines, given by 2 binding constraints

- LP with 2 variables
\Rightarrow Vertex is the intersection of 2 lines, given by 2 binding constraints

\qquad
- LP with 2 variables
\Rightarrow Vertex is the intersection of 2 lines, given by 2 binding constraints
\Rightarrow Compute its coordinates by solving

$$
\begin{aligned}
& \text { a system of } 2 \text { linear equations } \\
& \text { in } 2 \text { variables }
\end{aligned}
$$

\triangleright Solutions of a system of 2 linear equations given by constraints are called basic solutions

\triangleright Solutions of a system of 2 linear equations given by constraints are called basic solutions

\triangleright Solutions of a system of 2 linear equations given by constraints are called basic solutions

\triangleright Solutions of a system of 2 linear equations given by constraints are called basic solutions
\triangleright Feasible basic solutions are exactly the vertices of the feasible region

E \qquad

- LP with n variables

3-dim
4-dim

- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints

$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right)$
- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *

3-dim
4-dim

* constraints have to be linearly independent!
\qquad
- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

a system of n linear equations
 in n variables

3-dim

4-dim

* constraints have to be linearly independent!
(思)
- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

```
a system of n linear equations
in n variables
```

\triangleright Still true in n dimensions:

- The feasible region is a polyhedron (possibly empty)
* constraints have to be linearly independent!
- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

```
a system of n linear equations
in n variables
```

\triangleright Still true in n dimensions:

- The feasible region is a polyhedron (possibly empty)
- There is always a vertex which is optimal (if there is an optimum at all)
* constraints have to be linearly independent!
- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

```
a system of n linear equations
in n variables
```

- Still true in n dimensions:
- The feasible region is a polyhedron (possibly empty)
- There is always a vertex which is optimal (if there is an optimum at all)
\triangleright Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
* constraints have to be linearly independent!
- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

```
a system of n linear equations
in n variables
```

- Still true in n dimensions:
- The feasible region is a polyhedron (possibly empty)
- There is always a vertex which is optimal (if there is an optimum at all)
- Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
\Rightarrow Details:

[^0]- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

```
a system of n linear equations
in n variables
```

\triangleright Still true in n dimensions:

- The feasible region is a polyhedron (possibly empty)
- There is always a vertex which is optimal (if there is an optimum at all)
- Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
\Rightarrow Details:

[^1]- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

```
a system of n linear equations
in n}\mathrm{ variables
```

\triangleright Still true in n dimensions:

- The feasible region is a polyhedron (possibly empty)
- There is always a vertex which is optimal (if there is an optimum at all)
\triangleright Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
\Rightarrow Details:

[^2]- LP with n variables
\Rightarrow Vertex is the intersection of n hyperplanes, given by n binding constraints *
\Rightarrow Compute its coordinates by solving

```
a system of n linear equations
in n variables
```

\triangleright Still true in n dimensions:

- The feasible region is a polyhedron (possibly empty)
- There is always a vertex which is optimal (if there is an optimum at all)
- Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the objective vector until an optimal vertex is reached
\Rightarrow Details:

[^3]\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge

\qquad
\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge

\qquad
\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge

$\left(\frac{17}{(G P E)}\right)$ \qquad Z 80
\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge

\qquad
\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge
\Rightarrow To compute w from v only one binding constraint has to be exchanged!

E \qquad
\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge
\Rightarrow To compute w from v only one binding constraint has to be exchanged!

- If a vertex has no neighbours with a better objective
 function value then an optimum is reached!

\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge
\Rightarrow To compute w from v only one binding constraint has to be exchanged!
- If a vertex has no neighbours with a better objective
 function value then an optimum is reached!
(Due to linearity of the objective
function and convexity
of the feasible region!)
(APE)
\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge
\Rightarrow To compute w from v only one binding constraint has to be exchanged!

- If a vertex has no neighbours with a better objective function value then an optimum is reached!
(Due to linearity of the objective function and convexity of the feasible region!)
\triangleright If no opposite vertex can be computed (i.e. no "opposite" constraint found), then the problem is unbounded!
\qquad
\triangleright Two vertices v, w are neighbours of each other if they are connected by an edge
\Rightarrow To compute w from v only one binding constraint has to be exchanged!

- If a vertex has no neighbours with a better objective function value then an optimum is reached!
(Due to linearity of the objective function and convexity of the feasible region!)
\triangleright If no opposite vertex can be computed (i.e. no "opposite" constraint found), then the problem is unbounded!

$\left(\frac{\mathrm{TPE}}{(\mathrm{GPE}}\right):$

(APE)

(GPE

...............
76
- Problem:

Compute a starting vertex
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right):$

- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with
\qquad
\qquad

- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex

GPE

- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original

GPE

- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
(GPE)
- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
- Problem:

Choose a direction

- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
- Problem:

Choose a direction

- Bad Pivot rules may lead to inefficient behaviour
- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
- Problem:

Choose a direction

- Bad Pivot rules may lead to inefficient behaviour

(TPE) \qquad
- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
- Problem:

Choose a direction

- Bad Pivot rules may lead to inefficient behaviour or even cycling (with degenerate problems)

\qquad
- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
- Problem:

Choose a direction
\triangleright Bad Pivot rules may lead to inefficient behaviour or even cycling (with degenerate problems)

\triangleright Numerical Problems: Computers can only compute with limited precision

GPE \qquad

- Problem:

Compute a starting vertex
\Rightarrow Phase I: Formulate an auxiliary LP from the original with

- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
- Problem:

Choose a direction

- Bad Pivot rules may lead to inefficient behaviour or even cycling (with degenerate problems)

\triangleright Numerical Problems: Computers can only compute with limited precision
\Rightarrow May lead to unprecise solution values, or even completely wrong solutions, or also cycling!
\qquad
- Problem:

Compute a starting vertex

- Phase I: Formulate an auxiliary LP from the original with
- easy to see starting vertex
- a solution of the auxiliary with optimal value 0 gives a starting vertex for the original
and solve it by using (Phase II) of the simplex algorithm itself!
- Problem:

Choose a direction

- Bad Pivot rules may lead to inefficient behaviour or even cycling (with degenerate problems)

\triangleright Numerical Problems: Computers can only compute with limited precision
\Rightarrow May lead to unprecise solution values, or even completely wrong solutions, or also cycling! \Rightarrow Use numerically stable computations!
\triangleright A basic solution is primal feasible if is satisfies all constraints
\qquad
\qquad
\triangleright A basic solution is primal feasible if is satisfies all constraints
\triangleright A (primal feasible) basic solution is optimal if there is no neighbouring (primal feasible) basic solution with a better objective

GPE \qquad
\qquad
\square A basic solution is primal feasible if is satisfies all constraints
\triangleright A (primal feasible) basic solution is optimal if there is no neighbouring (primal feasible) basic solution with a better objective

- Dual feasible basic solutions have objective value at least as good as that of an optimal solution (but are not necessarily primal feasible)
\square A basic solution is primal feasible if is satisfies all constraints
\triangleright A (primal feasible) basic solution is optimal if there is no neighbouring (primal feasible) basic solution with a better objective
- Dual feasible basic solutions have objective value at least as good as that of an optimal solution (but are not necessarily primal feasible)
(Primal) Simplex Algorithm: Step from primal feasible solution to neighbouring primal feasible solution in direction of the objective until an optimal solution is reached

\qquad
\square A basic solution is primal feasible if is satisfies all constraints
\triangleright A (primal feasible) basic solution is optimal if there is no neighbouring (primal feasible) basic solution with a better objective
- Dual feasible basic solutions have objective value at least as good as that of an optimal solution (but are not necessarily primal feasible)
(Primal) Simplex Algorithm: Step from primal feasible solution to neighbouring primal feasible solution in direction of the objective until an optimal solution is reached

Dual Simplex Algorithm: Step from dual feasible solution to neighbouring dual feasible solution until a primal feasible solution is reached (which is then also optimal!)

\square A basic solution is primal feasible if is satisfies all constraints
\triangleright A (primal feasible) basic solution is optimal if there is no neighbouring (primal feasible) basic solution with a better objective

- Dual feasible basic solutions have objective value at least as good as that of an optimal solution (but are not necessarily primal feasible)
(Primal) Simplex Algorithm: Step from primal feasible solution to neighbouring primal feasible solution in direction of the objective until an optimal solution is reached

Dual Simplex Algorithm: Step from dual feasible solution to neighbouring dual feasible solution until a primal feasible solution is reached (which is then also optimal!)

\triangleright Dual simplex seems to be much more efficient (on average on real-world problems)!
$\left(\frac{\mathrm{TPE}}{(\mathrm{GPE}}\right):$
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

George Bernard Dantzig (1914-2005)
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm

George Bernard Dantzig (1914-2005)
\qquad
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex

George Bernard Dantzig (1914-2005)
\qquad
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method

George Bernard Dantzig (1914-2005)
\qquad
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method
\Rightarrow developed by L.G. Khachiyan in 1979

George Bernard Dantzig (1914-2005)

Leonid Genrikhovich Khachiyan (1952-2005)
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method
\Rightarrow developed by L.G. Khachiyan in 1979
\Rightarrow theoretically fast (polynomial)

George Bernard Dantzig (1914-2005)

Leonid Genrikhovich Khachiyan (1952-2005)
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method
\Rightarrow developed by L.G. Khachiyan in 1979
\Rightarrow theoretically fast (polynomial), but practically useless

George Bernard Dantzig (1914-2005)

Leonid Genrikhovich Khachiyan (1952-2005)
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method
\Rightarrow developed by L.G. Khachiyan in 1979
\Rightarrow theoretically fast (polynomial), but practically useless
- Interior Point Methods
- Barrier Method (Karmarkar, 1984)

George Bernard Dantzig (1914-2005)

\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method
\Rightarrow developed by L.G. Khachiyan in 1979
\Rightarrow theoretically fast (polynomial), but practically useless
- Interior Point Methods
- Barrier Method (Karmarkar, 1984)

George Bernard Dantzig (1914-2005)

Leonid Genrikhovich Khachiyan (1952-2005)
............
\triangleright Simplex Algorithm
\Rightarrow developed by George B. Dantzig in 1947

- Variants:
- Dual Simplex Algorithm
- Network Simplex
\triangleright Ellipsoid Method
\Rightarrow developed by L.G. Khachiyan in 1979
\Rightarrow theoretically fast (polynomial), but practically useless
- Interior Point Methods
- Barrier Method (Karmarkar, 1984)
\Rightarrow theoretically and practically fast
\Rightarrow used for large-scale LPs

George Bernard Dantzig (1914-2005)

Leonid Genrikhovich Khachiyan (1952-2005)
(GPE)
$\triangleright \quad$ LP solving in 1947*:
Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was Laderman's solution (see Dantzig 1963) of Stigler's (1945) diet problem. This LP had nine constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators for an estimated total of 120 man-days were needed to carry out the computations.
*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3-15
(9PE) \qquad
\triangleright LP solving in 1947*:
Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was
Laderman's solution (see Dantzig 1963) of Stigler's (1945) diet problem. This LP had nine constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators for an estimated total of 120 man-days were needed to carry out the computations.
\triangleright Improvements due to computer power (1987-2000)*:
Sun $3 / 50$ vs Pentium 4, 1.7 GHz \Rightarrow speedup factor 800
*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3-15
(GPE) -
\triangleright LP solving in 1947*:
Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was
Laderman's solution (see Dantzig 1963) of Stigler's (1945) diet problem. This LP had nine constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators for an estimated total of 120 man-days were needed to carry out the computations.
\triangleright Improvements due to computer power (1987-2000)*:
Sun $3 / 50$ vs Pentium $4,1.7 \mathrm{GHz} \Rightarrow$ speedup factor 800
\triangleright Improvements due to algorithms (1987-2000)*:
primal simplex 1988 vs primal/dual/barrier $2000 \Rightarrow$ speedup factor 2360
\Rightarrow Total speedup: ≈ 1900000 times (1987-2000)

[^4](GPE) \qquad
\triangleright LP solving in 1947*:
Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was Laderman's solution (see Dantzig 1963) of Stigler's (1945) diet problem. This LP had nine constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators for an estimated total of 120 man-days were needed to carry out the computations.
\triangleright Improvements due to computer power (1987-2000)*:
Sun $3 / 50$ vs Pentium $4,1.7 \mathrm{GHz} \Rightarrow$ speedup factor 800
\triangleright Improvements due to algorithms (1987-2000)*:
primal simplex 1988 vs primal/dual/barrier $2000 \Rightarrow$ speedup factor 2360
\Rightarrow Total speedup: ≈ 1900000 times (1987-2000)
\triangleright Conclusion (as of 2002)*:
A model that might have taken a year to solve 10 years ago can now solve in less than 30 seconds.
*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3-15
(GPE)

- Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright (Mixed) Integer Programming
- Mathematical Background: Cuts, Branch \& Bound
\triangleright Combinatorial Optimization
- Mathematical Background: Graphs, Algorithms
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
- Multicriteria Optimization
- Exam
\qquad
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis
\triangleright (Mixed) Integer Programming
\triangleright Mathematical Background: Cuts, Branch \& Bound
\triangleright Combinatorial Optimization
\triangleright Mathematical Background: Graphs, Algorithms
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
- Exam
\qquad

[^0]: * constraints have to be linearly independent!

[^1]: * constraints have to be linearly independent!

[^2]: * constraints have to be linearly independent!

[^3]: * constraints have to be linearly independent!

[^4]: *from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3-15

