
� �

Mathematical Tools

for Engineering and Management

Lecture 3

2 Nov 2011

··············



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� (Mixed) Integer Programming

� Mathematical Background: Cuts, Branch & Bound

� Combinatorial Optimization

� Mathematical Background: Graphs, Algorithms

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Exam

··············



� Modelling real-world problems �

Real World Mathematical World

Real-World Problem Mathematical Model

Solution Solution Algorithms

Representation

Implementation

Execution

Interpretation

··············



� Standard form of LPs �

maximize/minimize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

ℓj ≤ xj ≤ uj for all j = 1, . . . , n

General form

of LPs

··············



� Standard form of LPs �

maximize/minimize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

ℓj ≤ xj ≤ uj for all j = 1, . . . , n

General form

of LPs

➡ Every LP can be written in the following standard form :

··············



� Standard form of LPs �

maximize/minimize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

ℓj ≤ xj ≤ uj for all j = 1, . . . , n

General form

of LPs

➡ Every LP can be written in the following standard form :

maximize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

··············



� Standard form of LPs �

maximize/minimize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

ℓj ≤ xj ≤ uj for all j = 1, . . . , n

General form

of LPs

➡ Every LP can be written in the following standard form :

maximize

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m

➡ NOTE: • Every LHS and the objective are linear functions!

• Every constraint is a ≤-constraint!

··············



� Geometric interpretation �

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11

4
x
1 +

7
x
2 ≤

70

··············



� Geometric interpretation �

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11

4
x
1 +

7
x
2 ≤

70

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11 ➡ feasible region is a polyhedron

··············



� Geometric interpretation �

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11

4
x
1 +

7
x
2 ≤

70

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11 ➡ feasible region is a polyhedron

maximize
x
1 +

2
x
2

➡ objective can be visualised by

straight lines

··············



� Geometric interpretation �

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11

4
x
1 +

7
x
2 ≤

70

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11 ➡ feasible region is a polyhedron

maximize
x
1 +

2
x
2

➡ objective can be visualised by

straight lines

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11 ➡ feasible region is a polyhedron

➡ objective can be visualised by

straight lines

··············



� Geometric interpretation �

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11

4
x
1 +

7
x
2 ≤

70

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11 ➡ feasible region is a polyhedron

maximize
x
1 +

2
x
2

➡ objective can be visualised by

straight lines

x11 2 3 4 5 6 7 8 9 10 11 12 13

x2

1

2

3

4

5

6

7

8

9

10

11 ➡ feasible region is a polyhedron

➡ objective can be visualised by

straight lines

➡ there is always a vertex of the

feasible region which is optimal

··············



� How to compute a vertex (the 2-dimensional case) �

� LP with 2 variables

··············



� How to compute a vertex (the 2-dimensional case) �

� LP with 2 variables

➡ Vertex is the intersection of 2 lines, given by 2 binding constraints

··············



� How to compute a vertex (the 2-dimensional case) �

� LP with 2 variables

➡ Vertex is the intersection of 2 lines, given by 2 binding constraints

non-binding constraint

binding constraints

··············



� How to compute a vertex (the 2-dimensional case) �

� LP with 2 variables

➡ Vertex is the intersection of 2 lines, given by 2 binding constraints

non-binding constraint

binding constraints

➡ Compute its coordinates by solving a system of 2 linear equations

in 2 variables

··············



� Basic solutions (the 2-dimensional case) �

� Solutions of a system of 2 linear equations given by constraints are called

basic solutions

··············



� Basic solutions (the 2-dimensional case) �

� Solutions of a system of 2 linear equations given by constraints are called

basic solutions

feasible basic solution

··············



� Basic solutions (the 2-dimensional case) �

� Solutions of a system of 2 linear equations given by constraints are called

basic solutions

feasible basic solution

infeasible basic solution

··············



� Basic solutions (the 2-dimensional case) �

� Solutions of a system of 2 linear equations given by constraints are called

basic solutions

feasible basic solution

infeasible basic solution

� Feasible basic solutions are exactly the vertices of the feasible region

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

• There is always a vertex which is optimal (if there is an optimum at all)

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

• There is always a vertex which is optimal (if there is an optimum at all)

� Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the

objective vector until an optimal vertex is reached

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

• There is always a vertex which is optimal (if there is an optimum at all)

� Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the

objective vector until an optimal vertex is reached

➡ Details:
How to get to a

neighbouring

vertex?

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

• There is always a vertex which is optimal (if there is an optimum at all)

� Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the

objective vector until an optimal vertex is reached

➡ Details:
How to get to a

neighbouring

vertex?

How to realise

that the optimum

is reached?

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

• There is always a vertex which is optimal (if there is an optimum at all)

� Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the

objective vector until an optimal vertex is reached

➡ Details:
How to get to a

neighbouring

vertex?

How to realise

that the optimum

is reached?

What if

there is no

optimum?

··············



� ...in higher dimensions �

� LP with n variables

2-dim 3-dim 4-dim

➡ Vertex is the intersection of n hyperplanes, given by n binding constraints *

* constraints have to be linearly independent!

➡ Compute its coordinates by solving a system of n linear equations

in n variables

� Still true in n dimensions:

• The feasible region is a polyhedron (possibly empty)

• There is always a vertex which is optimal (if there is an optimum at all)

� Idea of the Simplex Algorithm : Jump from vertex to vertex in the direction of the

objective vector until an optimal vertex is reached

➡ Details:
How to get to a

neighbouring

vertex?

How to realise

that the optimum

is reached?

What if

there is no

optimum?

Or no feasible

solution at all?!

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

v

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

?

v

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

?

vv

w

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

?

vv

w

➡ To compute w from v only one binding

constraint has to be exchanged!

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

?

vv

w

➡ To compute w from v only one binding

constraint has to be exchanged!

� If a vertex has no neighbours with a better objective

function value then an optimum is reached!

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

?

vv

w

➡ To compute w from v only one binding

constraint has to be exchanged!

� If a vertex has no neighbours with a better objective

function value then an optimum is reached!

(Due to linearity of the objective

function and convexity

of the feasible

region!)

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

?

vv

w

➡ To compute w from v only one binding

constraint has to be exchanged!

� If a vertex has no neighbours with a better objective

function value then an optimum is reached!

(Due to linearity of the objective

function and convexity

of the feasible

region!)

� If no opposite vertex can be computed

(i.e. no “opposite” constraint found),

then the problem is unbounded!

··············



� Simplex algorithm – Details �

� Two vertices v, w are neighbours of each other

if they are connected by an edge

vv

?

vv

w

➡ To compute w from v only one binding

constraint has to be exchanged!

� If a vertex has no neighbours with a better objective

function value then an optimum is reached!

(Due to linearity of the objective

function and convexity

of the feasible

region!)

� If no opposite vertex can be computed

(i.e. no “opposite” constraint found),

then the problem is unbounded!

··············



� Simplex algorithm – Complete �

Start Compute a starting vertex

STOP

problem is

infeasible

Set current vertex to starting

vertex

Objective function increasing

in any direction?

STOP

current vertex is

optimal

Choose a direction

Set current vertex

to opposite vertex
Is there an opposite vertex?

STOP

problem is

unbounded

failed

successful

no

yes

noyes

··············



� Simplex algorithm – Complete �

Phase I

Start Compute a starting vertex

STOP

problem is

infeasible

Set current vertex to starting

vertex

Objective function increasing

in any direction?

STOP

current vertex is

optimal

Choose a direction

Set current vertex

to opposite vertex
Is there an opposite vertex?

STOP

problem is

unbounded

failed

successful

no

yes

noyes

··············



� Simplex algorithm – Complete �

Phase I

Phase II

Start Compute a starting vertex

STOP

problem is

infeasible

Set current vertex to starting

vertex

Objective function increasing

in any direction?

STOP

current vertex is

optimal

Choose a direction

Set current vertex

to opposite vertex
Is there an opposite vertex?

STOP

problem is

unbounded

failed

successful

no

yes

noyes

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

� Bad Pivot rules may lead to inefficient behaviour

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

� Bad Pivot rules may lead to inefficient behaviour

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

� Bad Pivot rules may lead to inefficient behaviour

or even cycling (with degenerate problems)

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

� Bad Pivot rules may lead to inefficient behaviour

or even cycling (with degenerate problems)

� Numerical Problems: Computers can only compute with limited precision

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

� Bad Pivot rules may lead to inefficient behaviour

or even cycling (with degenerate problems)

� Numerical Problems: Computers can only compute with limited precision

➡ May lead to unprecise solution values, or even completely wrong solutions, or also

cycling!

··············



� Simplex algorithm – Phase I and traps �

� Problem: Compute a starting vertex

➡ Phase I: Formulate an auxiliary LP from the original with

• easy to see starting vertex

• a solution of the auxiliary with optimal value 0 gives a starting vertex

for the original

and solve it by using (Phase II) of the simplex algorithm itself!

� Problem: Choose a direction

� Bad Pivot rules may lead to inefficient behaviour

or even cycling (with degenerate problems)

� Numerical Problems: Computers can only compute with limited precision

➡ May lead to unprecise solution values, or even completely wrong solutions, or also

cycling! ➡ Use numerically stable computations!

··············



� Dual simplex algorithm �

� A basic solution is primal feasible if is satisfies all constraints

··············



� Dual simplex algorithm �

� A basic solution is primal feasible if is satisfies all constraints

� A (primal feasible) basic solution is optimal if there is no neighbouring (primal

feasible) basic solution with a better objective

··············



� Dual simplex algorithm �

� A basic solution is primal feasible if is satisfies all constraints

� A (primal feasible) basic solution is optimal if there is no neighbouring (primal

feasible) basic solution with a better objective

� Dual feasible basic solutions have objective value at least as good as that of an

optimal solution (but are not necessarily primal feasible)

··············



� Dual simplex algorithm �

� A basic solution is primal feasible if is satisfies all constraints

� A (primal feasible) basic solution is optimal if there is no neighbouring (primal

feasible) basic solution with a better objective

� Dual feasible basic solutions have objective value at least as good as that of an

optimal solution (but are not necessarily primal feasible)

(Primal) Simplex Algorithm: Step from primal feasible

solution to neighbouring primal feasible solution in direction

of the objective until an optimal solution is reached

··············



� Dual simplex algorithm �

� A basic solution is primal feasible if is satisfies all constraints

� A (primal feasible) basic solution is optimal if there is no neighbouring (primal

feasible) basic solution with a better objective

� Dual feasible basic solutions have objective value at least as good as that of an

optimal solution (but are not necessarily primal feasible)

(Primal) Simplex Algorithm: Step from primal feasible

solution to neighbouring primal feasible solution in direction

of the objective until an optimal solution is reached

Dual Simplex Algorithm: Step from dual feasible solution

to neighbouring dual feasible solution until a primal feasible

solution is reached (which is then also optimal!)

··············



� Dual simplex algorithm �

� A basic solution is primal feasible if is satisfies all constraints

� A (primal feasible) basic solution is optimal if there is no neighbouring (primal

feasible) basic solution with a better objective

� Dual feasible basic solutions have objective value at least as good as that of an

optimal solution (but are not necessarily primal feasible)

(Primal) Simplex Algorithm: Step from primal feasible

solution to neighbouring primal feasible solution in direction

of the objective until an optimal solution is reached

Dual Simplex Algorithm: Step from dual feasible solution

to neighbouring dual feasible solution until a primal feasible

solution is reached (which is then also optimal!)

� Dual simplex seems to be much more efficient (on average on real-world problems)!

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

➡ theoretically fast (polynomial)

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

➡ theoretically fast (polynomial), but practically useless

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

➡ theoretically fast (polynomial), but practically useless

� Interior Point Methods

➡ Barrier Method (Karmarkar, 1984)

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

➡ theoretically fast (polynomial), but practically useless

� Interior Point Methods

➡ Barrier Method (Karmarkar, 1984)

··············



� LP algorithm zoo �

� Simplex Algorithm

➡ developed by George B. Dantzig in 1947

George Bernard Dantzig

(1914–2005)

➡ Variants:

• Dual Simplex Algorithm

• Network Simplex

� Ellipsoid Method

➡ developed by L.G. Khachiyan in 1979

Leonid Genrikhovich Khachiyan

(1952–2005)

➡ theoretically fast (polynomial), but practically useless

� Interior Point Methods

➡ Barrier Method (Karmarkar, 1984)

➡ theoretically and practically fast

➡ used for large-scale LPs

··············



� Progress in LP solving �

� LP solving in 1947*:

Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was

Laderman’s solution (see Dantzig 1963) of Stigler’s (1945) diet problem. This LP had nine

constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators

for an estimated total of 120 man-days were needed to carry out the computations.

*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3–15

··············



� Progress in LP solving �

� LP solving in 1947*:

Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was

Laderman’s solution (see Dantzig 1963) of Stigler’s (1945) diet problem. This LP had nine

constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators

for an estimated total of 120 man-days were needed to carry out the computations.

*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3–15

� Improvements due to computer power (1987–2000)*:

Sun 3/50 vs Pentium 4, 1.7 GHz ➡ speedup factor 800

··············



� Progress in LP solving �

� LP solving in 1947*:

Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was

Laderman’s solution (see Dantzig 1963) of Stigler’s (1945) diet problem. This LP had nine

constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators

for an estimated total of 120 man-days were needed to carry out the computations.

*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3–15

� Improvements due to computer power (1987–2000)*:

Sun 3/50 vs Pentium 4, 1.7 GHz ➡ speedup factor 800

� Improvements due to algorithms (1987–2000)*:

primal simplex 1988 vs primal/dual/barrier 2000 ➡ speedup factor 2360

➡ Total speedup: ≈ 1900000 times (1987–2000)

··············



� Progress in LP solving �

� LP solving in 1947*:

Perhaps the first instance of a nontrivial LP solved with the simplex algorithm was

Laderman’s solution (see Dantzig 1963) of Stigler’s (1945) diet problem. This LP had nine

constraints and 77 variables. Reportedly, nine coworkers working on electronic calculators

for an estimated total of 120 man-days were needed to carry out the computations.

*from: Bixby, Solving real-world linear programs: a decade and more of progress, OR 50 (2002), 3–15

� Improvements due to computer power (1987–2000)*:

Sun 3/50 vs Pentium 4, 1.7 GHz ➡ speedup factor 800

� Improvements due to algorithms (1987–2000)*:

primal simplex 1988 vs primal/dual/barrier 2000 ➡ speedup factor 2360

➡ Total speedup: ≈ 1900000 times (1987–2000)

� Conclusion (as of 2002)*:

A model that might have taken a year to solve 10 years ago can now solve in less than 30

seconds.

··············



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� (Mixed) Integer Programming

� Mathematical Background: Cuts, Branch & Bound

� Combinatorial Optimization

� Mathematical Background: Graphs, Algorithms

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Exam

··············



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� (Mixed) Integer Programming

� Mathematical Background: Cuts, Branch & Bound

� Combinatorial Optimization

� Mathematical Background: Graphs, Algorithms

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Exam

� Sensitivity Analysis

··············


