Mathematical Tools
 for Engineering and Management

Lecture 5

16 Nov 2011
$\left(\frac{\text { GPE }}{(G)}\right.$
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright Branch \& Bound, Cutting Planes; More Examples; Combinatorial Optimization
\triangleright Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Oral exam
$\left(\frac{17}{(G P E)}\right)$
\triangleright Production Planning in Automobile Industry

Product	Beetle	Cabrio
Revenue	$\$ 10000$	$\$ 20000$

Manufacturing	5 h	3 h
Assembly	4 h	7 h
Raw material	400 kg	400 kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
\Rightarrow Question: How many cars of each type should be produced to maximize the profit?
\qquad
\triangleright Production Planning in Automobile Industry

Product	Beetle	Cabrio
Revenue	$\$ 10000$	$\$ 14000$
Manufacturing	5 h	3 h
Assembly	4 h	7 h
Raw material	400 kg	400 kg

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
\Rightarrow Question: How many cars of each type should be produced to maximize the profit?
\qquad

maximize/minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Objective function
$\begin{array}{lll}\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m & \text { C } \\ & \ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=1, \ldots, n & \mathrm{~V}\end{array}$
\qquad
maximize/minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Objective function
subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad$ for all $i=1, \ldots, m \quad$ C $\ell_{j} \leq x_{j} \leq u_{j} \quad$ for all $j=1, \ldots, n$

$$
x_{j} \text { integer } \quad \text { for all } j=1, \ldots, n
$$

\qquad

$$
\text { maximize/minimize } \quad \sum_{j=1}^{n} c_{j} x_{j}
$$

Objective function

subject to	$\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad$ for all $i=1, \ldots, m$	C
	$\ell_{j} \leq x_{j} \leq u_{j}$	for all $j=1, \ldots, n$

$\Rightarrow I_{\text {nteger }} P_{\text {rogram }}$

$$
x_{j} \text { integer } \quad \text { for all } j=1, \ldots, n
$$

$$
\text { maximize/minimize } \quad \sum_{j=1}^{n} c_{j} x_{j}
$$

Objective function

subject to \quad	$\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad$ for all $i=1, \ldots, m$	C
	$\ell_{j} \leq x_{j} \leq u_{j} \quad$ for all $j=1, \ldots, n$	V

$\Rightarrow I_{\text {nteger }} P_{\text {rogram }}$
x_{j} integer for all $j=1, \ldots, n$
$\Rightarrow M_{\text {ixed }} I_{\text {nteger }} P_{\text {rogram }}$

$$
x_{j} \text { integer for all } j=1, \ldots, \ell
$$

$$
(\ell<n)
$$

$$
\text { maximize/minimize } \quad \sum_{j=1}^{n} c_{j} x_{j}
$$

Objective function

subject to	$\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$	for all $i=1, \ldots, m$
		C
	$\ell_{j} \leq x_{j} \leq u_{j}$	for all $j=1, \ldots, n$
V		

$\Rightarrow I_{\text {nteger }} P_{\text {rogram }}$
$\Rightarrow M_{\text {ixed }} I_{\text {nteger }} P_{\text {rogram }}$
x_{j} integer for all $j=1, \ldots, \ell$ $(\ell<n)$
\Rightarrow The LP obtained by skipping all of the integrality constraints is called the Linear Programming Relaxation of the (M)IP
maximize $/$ minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Objective function
subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad$ for all $i=1, \ldots, m \quad$ C

$$
\ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=\ell+1, \ldots, n
$$

\square

$$
x_{j} \text { integer } \quad \text { for all } j=1, \ldots, \ell
$$

maximize $/$ minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Objective function

subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad$ for all $i=1, \ldots, m$	C	
	$\ell_{j} \leq x_{j} \leq u_{j} \quad$ for all $j=\ell+1, \ldots, n$	V

$$
0 \leq x_{j} \leq 1 \quad \text { for all } j=1, \ldots, \ell \quad(\ell<n)
$$

$$
x_{j} \text { integer for all } j=1, \ldots, \ell
$$

maximize/minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Objective function

subject to	$\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$	for all $i=1, \ldots, m$
	C	
	$\ell_{j} \leq x_{j} \leq u_{j}$	for all $j=\ell+1, \ldots, n$

$$
\begin{array}{cc}
0 \leq x_{j} \leq 1 \quad \text { for all } j=1, \ldots, \ell \quad(\ell<n) \\
x_{j} \text { integer } \quad \text { for all } j=1, \ldots, \ell \\
\mathfrak{\imath}
\end{array}
$$

$$
x_{j} \in\{0,1\} \quad \text { for all } j=1, \ldots, \ell \quad(\ell<n)
$$

maximize/minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Objective function
subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad$ for all $i=1, \ldots, m \quad$ C

$$
\ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=\ell+1, \ldots, n
$$

$$
0 \leq x_{j} \leq 1 \quad \text { for all } j=1, \ldots, \ell \quad(\ell<n)
$$

$$
x_{j} \text { integer } \quad \text { for all } j=1, \ldots, \ell
$$

\Uparrow

$$
x_{j} \in\{0,1\} \quad \text { for all } j=1, \ldots, \ell \quad(\ell<n)
$$

- Binary variables used to model yes/no decisions
\triangleright Original problem: How many cars should be produced to maximize the profit?

Product	Beetle	Cabrio		
Revenue	$\$ 10000$	$\$ 14000$		Plant capacity and available raw materials:
Manufacturing	5 h	3 h		- Manufacturing capacity: 50 h
Assembly	4 h	7 h		- Assembly capacity: 70 h
Raw material	400 kg	400 kg		- Raw material: 8000 kg

\triangleright Original problem: How many cars should be produced to maximize the profit?

Product	Beetle	Cabrio		
Revenue	$\$ 10000$	$\$ 14000$		Plant capacity and available raw materials:
Manufacturing	5 h	3 h		- Manufacturing capacity: 50 h
Assembly	4 h	7 h		- Assembly capacity: 70 h
Raw material	400 kg	400 kg		- Raw material: 8000 kg

\triangleright Additional Options: Investments in manufacturing and/or assembly units
\qquad
\triangleright Original problem: How many cars should be produced to maximize the profit?

Product	Beetle	Cabrio		
Revenue	$\$ 10000$	$\$ 14000$		Plant capacity and available raw materials:
Manufacturing	5 h	3 h		- Manufacturing capacity: 50 h
Assembly	4 h	7 h		- Assembly capacity: 70 h
Raw material	400 kg	400 kg		- Raw material: 8000 kg

\triangleright Additional Options: Investments in manufacturing and/or assembly units
Investment Extra Cap.

Manufacturing	$\$ 10000$	19 h
Assembly, Option 1	$\$ 10000$	20 h
Assembly, Option 2	$\$ 25000$	32 h
Assembly, Option 3	$\$ 40000$	45 h

\triangleright Original problem: How many cars should be produced to maximize the profit?

Product	Beetle	Cabrio		
Revenue	$\$ 10000$	$\$ 14000$		Plant capacity and available raw materials:
Manufacturing	5 h	3 h		- Manufacturing capacity: 50 h
Assembly	4 h	7 h		- Assembly capacity: 70 h
Raw material	400 kg	400 kg		- Raw material: 8000 kg

\triangleright Additional Options: Investments in manufacturing and/or assembly units
Investment Extra Cap.

Manufacturing	$\$ 10000$	19 h
Assembly, Option 1	$\$ 10000$	20 h
Assembly, Option 2	$\$ 25000$	32 h
Assembly, Option 3	$\$ 40000$	45 h

Budget for investment:

 max. $\$ 50000$$\qquad$

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
(total raw material available) $\quad \rho_{\text {beetl }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in each department) $t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio }, d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$
v (non-negativity of variables) $\quad x_{c} \geq 0$ for all $c \in C$

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$

C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$	
(time spent in each department)	$t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio } d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$

V
(integrality of variables)

$$
\begin{aligned}
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \quad \text { integer for all } c \in C
\end{aligned}
$$

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$

C
 (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
 (time spent in each department) $t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio }, d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$

(0/1 decision variables)
$y_{\text {man1 }}, y_{\text {ass1 }}, y_{\text {ass2 }}, y_{\text {ass } 3} \in\{0,1\}$
(integrality of variables)

$$
\begin{aligned}
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \quad \text { integer for all } c \in C
\end{aligned}
$$

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
$\begin{array}{ll}\text { C (total raw material available) } & \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R \\ \text { (time spent in each department) } & t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio } d} x_{\text {cabrio }} \leq T_{d} \text { for all } d \in D\end{array}$

V
(0/1 decision variables)
$y_{\text {man1 }}, y_{\text {ass1 }}, y_{\text {ass } 2}, y_{\text {ass } 3} \in\{0,1\}$
$x_{c} \geq 0$ for all $c \in C$
(integrality of variables)
x_{c} integer for all $c \in C$
\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$

C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$	
(time spent in each department)	$t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio } d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$

$$
\begin{aligned}
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$

C
(total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in each department) $t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio }, d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$

V
(0/1 decision variables)

$$
\begin{aligned}
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $\quad b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$ (time spent in each department) $t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio }, d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$
(available budget)
(0/1 decision variables)
(integrality of variables)

$$
\begin{aligned}
& b_{\text {man } 1} y_{\text {man } 1}+b_{\text {ass } 1} y_{\text {ass } 1}+b_{\text {ass } 2} y_{\text {ass } 2}+b_{\text {ass } 3} y_{\text {ass }} \leq B \\
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3 $\}$
\triangleright New parameters: investment capital $\quad b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$ (time spent in each department) $t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio }, d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$
(available budget)

$$
\sum_{i \in I} b_{i} y_{i} \leq B
$$

V
(0/1 decision variables)

$$
\begin{aligned}
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3 $\}$
\triangleright New parameters: investment capital $\quad b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$ (time spent in each department) $t_{\text {beetle }, d} x_{\text {beetle }}+t_{\text {cabrio }, d} x_{\text {cabrio }} \leq T_{d}$ for all $d \in D$
(available budget)

$$
\begin{aligned}
& \sum_{i \in I} b_{i} y_{i} \leq B \\
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
additional capacities $\tau_{\text {man1 }}=19, \tau_{\text {ass1 }}=20, \tau_{\text {ass } 2}=32, \tau_{\text {ass } 3}=45$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in manufacturing) $\quad t_{\text {beetle,man }} x_{\text {beetle }}+t_{\text {cabrio,man }} x_{\text {cabrio }} \leq T_{\text {man }}$
(available budget)

$$
\begin{aligned}
& \sum_{i \in I} b_{i} y_{i} \leq B \\
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
additional capacities $\tau_{\text {man } 1}=19, \tau_{\text {ass } 1}=20, \tau_{\text {ass } 2}=32, \tau_{\text {ass } 3}=45$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in manufacturing) $\quad t_{\text {beetle,man }} x_{\text {beetle }}+t_{\text {cabrio,man }} x_{\text {cabrio }} \leq T_{\text {man }}+\tau_{\text {man1 }} y_{\text {man } 1}$
(available budget)

$$
\begin{aligned}
& \sum_{i \in I} b_{i} y_{i} \leq B \\
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass } 3}=40$
additional capacities $\tau_{\text {man1 }}=19, \tau_{\text {ass1 }}=20, \tau_{\text {ass } 2}=32, \tau_{\text {ass } 3}=45$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in manufacturing) $\quad t_{\text {beetle,man }} x_{\text {beetle }}+t_{\text {cabrio,man }} x_{\text {cabrio }}-\tau_{\text {man1 }} y_{\text {man1 }} \leq T_{\text {man }}$
(available budget)

$$
\begin{aligned}
& \sum_{i \in I} b_{i} y_{i} \leq B \\
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
additional capacities $\tau_{\text {man1 }}=19, \tau_{\text {ass1 }}=20, \tau_{\text {ass } 2}=32, \tau_{\text {ass } 3}=45$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
$\begin{array}{lll}\text { C } & \text { (total raw material available) } & \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R \\ & \text { (time spent in manufacturing) } & \sum_{c \in C} t_{c, \text { man }} x_{c}-\tau_{\text {man1 }} y_{\text {man1 }} \leq T_{\text {man }}\end{array}$
(available budget)

$$
\begin{aligned}
& \sum_{i \in I} b_{i} y_{i} \leq B \\
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
additional capacities $\tau_{\text {man } 1}=19, \tau_{\text {ass } 1}=20, \tau_{\text {ass } 2}=32, \tau_{\text {ass } 3}=45$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in manufacturing) $\quad \sum_{c \in C} t_{c, \text { man }} x_{c}-\tau_{\text {man } 1} y_{\text {man } 1} \leq T_{\text {man }}$
(time spent in assembly) $\quad \sum_{c \in C} t_{c \text {,ass }} x_{c} \leq T_{\text {ass }}+\tau_{\text {ass1 }} y_{\text {ass } 1}+\tau_{\text {ass } 2} y_{\text {ass } 2}+\tau_{\text {ass } 3} y_{\text {ass } 3}$
(available budget)

$$
\sum_{i \in I} b_{i} y_{i} \leq B
$$

V
(0/1 decision variables)

$$
y_{i} \in\{0,1\} \text { for all } i \in I
$$

(integrality of variables)

$$
x_{c} \geq 0 \text { for all } c \in C
$$

$$
x_{c} \text { integer for all } c \in C
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass } 3}=40$
additional capacities $\tau_{\text {man } 1}=19, \tau_{\text {ass } 1}=20, \tau_{\text {ass2 }}=32, \tau_{\text {ass } 3}=45$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in manufacturing) $\quad \sum_{c \in C} t_{c, \text { man }} x_{c}-\tau_{\text {man } 1} y_{\text {man } 1} \leq T_{\text {man }}$
(time spent in assembly)

$$
\sum_{c \in C} t_{c, \text { ass }} x_{c} \leq T_{\text {ass }}+\sum_{i \in\{\text { ass } 1, \text { ass } 2, \text { ass } 3\}} \tau_{i} y_{i}
$$

(available budget)
$\sum_{i \in I} b_{i} y_{i} \leq B$
V
(0/1 decision variables)

$$
y_{i} \in\{0,1\} \text { for all } i \in I
$$

(integrality of variables)

$$
x_{c} \geq 0 \text { for all } c \in C
$$

$$
x_{c} \text { integer for all } c \in C
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
additional capacities $\tau_{\text {man } 1}=19, \tau_{\text {ass } 1}=20, \tau_{\text {ass } 2}=32, \tau_{\text {ass } 3}=45$
\qquad

Objective function: maximize (total revenue) $r_{\text {beetle }} \cdot x_{\text {beetle }}+r_{\text {cabrio }} \cdot x_{\text {cabrio }}$
C (total raw material available) $\quad \rho_{\text {beetle }} x_{\text {beetle }}+\rho_{\text {cabrio }} x_{\text {cabrio }} \leq R$
(time spent in manufacturing) $\sum_{c \in C} t_{c, \text { man }} x_{c}-\tau_{\text {man } 1} y_{\text {man } 1} \leq T_{\text {man }}$
(time spent in assembly)

$$
\sum_{c \in C} t_{c, \text { ass }} x_{c}-\sum_{i \in\{\text { ass } 1, \text { ass2,ass } 3\}} \tau_{i} y_{i} \leq T_{\text {ass }}
$$

(available budget)

$$
\sum_{i \in I} b_{i} y_{i} \leq B
$$

V
(0/1 decision variables)

$$
\begin{aligned}
& y_{i} \in\{0,1\} \text { for all } i \in I \\
& x_{c} \geq 0 \text { for all } c \in C \\
& x_{c} \text { integer for all } c \in C
\end{aligned}
$$

\triangleright New set: investment decisions $I=\{$ man1, ass1, ass2, ass3\}
\triangleright New parameters: investment capital $b_{\text {man1 }}=10, b_{\text {ass1 }}=10, b_{\text {ass2 }}=25, b_{\text {ass3 }}=40$
additional capacities $\tau_{\text {man } 1}=19, \tau_{\text {ass } 1}=20, \tau_{\text {ass } 2}=32, \tau_{\text {ass } 3}=45$
\qquad
optimal IP solution

\# beetles	4
\# cabrios	15
manufact. investment option	1
assembly investment option 1	1
assembly investment option 2	1
assembly investment option 3	0

optimal IP solution			revenue: \$250000	
\# beetles	4			
\# cabrios	15	constraints	used up	available
manufact. investment option	1	manufact. time	65	$50+19$
assembly investment option 1	1	assembly time	121	$70+20+32$
assembly investment option 2	1	raw material	7600	8000
assembly investment option 3	0	budget	$10 T+10 T+25 T$	50T

optimal IP solution			re	revenue: \$250000	
\# beetles		4			
\# cabrios		15	constraints	used up ava	
manufact. investment option		1	manufact. time		$65 \quad 50$
assembly investment option 1		1	assembly time		$12170+20$
assembly investment option 2		1	raw material		600
assembly investment option 3		0	budget $\mid 10 \mathrm{~T}+10 \mathrm{~T}+25 \mathrm{~T}$		
optimum of the LP relaxation			revenue: \$268760.12		
\# beetles		0			
\# cabrios	19.197151		constraints	used up	available
manu. invest.		399550	manufact. time	57.59145	57.59145
assembly invest. option 1		1	assembly time	134.38	134.38004
assembly invest. option 2		1	raw material	7678.8604	8000
assembly invest. option 3		75112	budget	$50 T$	50T

LP-
relaxation $\begin{cases}\text { maximize/minimize } \sum_{j=1}^{n} c_{j} x_{j} & \text { Objective function } \\ \text { subject to } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for all } i=1, \ldots, m & \text { C } \\ \ell_{j} \leq x_{j} \leq u_{j} \quad \text { for all } j=1, \ldots, n & \mathrm{~V}\end{cases}$
$\Rightarrow I_{\text {integer }} P_{\text {rogram }}$

$$
x_{j} \text { integer for all } j=1, \ldots, n
$$

$\Rightarrow M_{\text {ied }} I_{\text {integer }} P_{\text {rogram }}$

$$
x_{j} \text { integer for all } j=1, \ldots, \ell
$$

- Binary variables:

$$
x_{j} \in\{0,1\} \text { for all } j=1, \ldots, \ell
$$

$\triangleright \quad$ Increase an existing capacity (yes/no decision)
\qquad
\qquad
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity

- (... used up capacity...) $\leq T+\tau \cdot y \quad$ (T : existing capacity, τ : additional capacity)
\qquad
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
\Rightarrow (...used up capacity...) $-\tau \cdot y \leq T \quad$ (T : existing capacity, τ : additional capacity)
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
\Rightarrow (... used up capacity...) $-\tau \cdot y \leq T \quad$ (T : existing capacity, τ : additional capacity)
\triangleright Install a number of (capacity-increasing) devices
$\triangleright \quad$ Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
$\Rightarrow \quad(\ldots$ used up capacity...) $-\tau \cdot y \leq T \quad(T$: existing capacity, τ : additional capacity $)$
- Install a number of (capacity-increasing) devices
\Rightarrow integer variable $z \in \mathrm{z}$, meaning: $z=$ number of devices
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
\Rightarrow (... used up capacity...) $-\tau \cdot y \leq T \quad$ (T : existing capacity, τ : additional capacity)
\triangleright Install a number of (capacity-increasing) devices
\Rightarrow integer variable $z \in z$, meaning: $z=$ number of devices
\Rightarrow (... used up capacity...) $-\tau \cdot z \leq T \quad(\tau:$ additional capacity per device)
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
\Rightarrow (... used up capacity...) $-\tau \cdot y \leq T \quad$ (T : existing capacity, τ : additional capacity)
\triangleright Install a number of (capacity-increasing) devices
\Rightarrow integer variable $z \in z$, meaning: $z=$ number of devices
- (...used up capacity...) $-\tau \cdot z \leq T \quad$ (τ : additional capacity per device)
\triangleright Choose between various options to increase capacity
$\triangleright \quad$ Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
$\Rightarrow \quad(\ldots$ used up capacity...) $-\tau \cdot y \leq T \quad(T$: existing capacity, τ : additional capacity)
\triangleright Install a number of (capacity-increasing) devices
\Rightarrow integer variable $z \in \mathrm{z}$, meaning: $z=$ number of devices
$\Rightarrow \quad(\ldots$ used up capacity...) $-\tau \cdot z \leq T \quad(\tau$: additional capacity per device)
- Choose between various options to increase capacity
\Rightarrow binary variables $y_{1}, \ldots, y_{n} \in\{0,1\}$, meaning: $y_{i}=1 \Leftrightarrow$ choose option i
\qquad
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
- (\ldots used up capacity \ldots) $-\tau \cdot y \leq T \quad$ (T : existing capacity, τ : additional capacity)
\triangleright Install a number of (capacity-increasing) devices
\Rightarrow integer variable $z \in z$, meaning: $z=$ number of devices
$\Rightarrow \quad(\ldots$ used up capacity $\ldots)-\tau \cdot z \leq T \quad(\tau:$ additional capacity per device)
\triangleright Choose between various options to increase capacity
\Rightarrow binary variables $y_{1}, \ldots, y_{n} \in\{0,1\}$, meaning: $y_{i}=1 \Leftrightarrow$ choose option i
$\Rightarrow \quad(\ldots$ used up capacity $\ldots)-\sum_{i=1}^{n} \tau_{i} \cdot y_{i} \leq T \quad\left(\tau_{i}\right.$: add. capacity available through option $\left.i\right)$
\triangleright Increase an existing capacity (yes/no decision)
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow$ invest to increase capacity
\Rightarrow (... used up capacity...) $-\tau \cdot y \leq T \quad$ (T : existing capacity, τ : additional capacity)
\triangleright Install a number of (capacity-increasing) devices
\Rightarrow integer variable $z \in_{z}$, meaning: $z=$ number of devices
$\Rightarrow \quad$ (... used up capacity...) $-\tau \cdot z \leq T \quad(\tau$: additional capacity per device)
\triangleright Choose between various options to increase capacity
\Rightarrow binary variables $y_{1}, \ldots, y_{n} \in\{0,1\}$, meaning: $y_{i}=1 \Leftrightarrow$ choose option i
$\Rightarrow \quad\left(\ldots\right.$ used up capacity...) $-\sum_{i=1}^{n} \tau_{i} \cdot y_{i} \leq T \quad\left(\tau_{i}\right.$: add. capacity available through option $\left.i\right)$
\triangleright Common extension: only one of the available options can be chosen
\Rightarrow add set packing constraints for the y_{i} 's...
\qquad
- Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
\qquad $74 \sqrt{8}$
- Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1$
\qquad
\triangleright Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1$
\triangleright Set covering constraints:
\Rightarrow choose at least one of the binary variables y_{1}, \ldots, y_{n}
\qquad
\triangleright Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1$
\triangleright Set covering constraints:
\Rightarrow choose at least one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \geq 1$
\triangleright Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1$
\triangleright Set covering constraints:
\Rightarrow choose at least one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \geq 1$
\triangleright Set partitioning constraints:
\Rightarrow choose exactly one of the binary variables y_{1}, \ldots, y_{n}
\triangleright Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1$
\triangleright Set covering constraints:
\Rightarrow choose at least one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \geq 1$
\triangleright Set partitioning constraints:
\Rightarrow choose exactly one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n}=1$
\triangleright Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1$
\triangleright Set covering constraints:
\Rightarrow choose at least one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \geq 1$
\triangleright Set partitioning constraints:
\Rightarrow choose exactly one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n}=1$
\triangleright Similarly for arbitrary (integer!) quantity on the RHS:
\Rightarrow choose at most/at least/exactly k of the binary variables y_{1}, \ldots, y_{n}
\triangleright Set packing constraints:
\Rightarrow choose at most one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq 1$
\triangleright Set covering constraints:
\Rightarrow choose at least one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \geq 1$
\triangleright Set partitioning constraints:
\Rightarrow choose exactly one of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n}=1$
\triangleright Similarly for arbitrary (integer!) quantity on the RHS:
\Rightarrow choose at most/at least/exactly k of the binary variables y_{1}, \ldots, y_{n}
$\Rightarrow y_{1}+y_{2}+\ldots+y_{n} \leq k / \geq k /=k$
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$ $y_{\mathrm{A}} \leq y_{\mathrm{B}}$

760
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ is taken, then also B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}_{1}}, \ldots, y_{\mathrm{A}_{n}}, y_{\mathrm{B}} \in\{0,1\}$, same meaning as above
\qquad
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ is taken, then also B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}_{1}}, \ldots, y_{\mathrm{A}_{n}}, y_{\mathrm{B}} \in\{0,1\}$, same meaning as above
$\Rightarrow y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}}$
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ is taken, then also B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}_{1}}, \ldots, y_{\mathrm{A}_{n}}, y_{\mathrm{B}} \in\{0,1\}$, same meaning as above
$\Rightarrow \quad y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}} \quad \Rightarrow$ possibly bad if n is large (big-M constraints)
\qquad
\qquad
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ is taken, then also B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}_{1}}, \ldots, y_{\mathrm{A}_{n}}, y_{\mathrm{B}} \in\{0,1\}$, same meaning as above
$\Rightarrow y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}} \quad \Rightarrow$ possibly bad if n is large (big-M constraints)
\triangleright Triggering: if some value exceeds a given threshold, then B happens
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions A_{1}, \ldots, A_{n} is taken, then also B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}_{1}}, \ldots, y_{\mathrm{A}_{n}}, y_{\mathrm{B}} \in\{0,1\}$, same meaning as above
$\Rightarrow y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}} \quad \Rightarrow$ possibly bad if n is large (big-M constraints)
\triangleright Triggering: if some value exceeds a given threshold, then B happens
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow B$ happens
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions A_{1}, \ldots, A_{n} is taken, then also B has to be taken
\Rightarrow binary variables $y_{A_{1}}, \ldots, y_{A_{n}}, y_{B} \in\{0,1\}$, same meaning as above
$\Rightarrow y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}} \quad \Rightarrow$ possibly bad if n is large (big-M constraints)
\triangleright Triggering: if some value exceeds a given threshold, then B happens
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow B$ happens
$\Rightarrow(\ldots$ linear expression for value... $) \leq T+M \cdot y \quad(T$: threshold, M : big enough value)
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions A_{1}, \ldots, A_{n} is taken, then also B has to be taken
\Rightarrow binary variables $y_{A_{1}}, \ldots, y_{A_{n}}, y_{B} \in\{0,1\}$, same meaning as above
$\Rightarrow y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}} \quad \Rightarrow$ possibly bad if n is large (big-M constraints)
\triangleright Triggering: if some value exceeds a given threshold, then B happens
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow B$ happens
$\Rightarrow(\ldots$ linear expression for value... $) \leq T+M \cdot y \quad$ (T : threshold, M : big enough value)
\triangleright Special case: if all of decisions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ are taken, then B has to be taken
\qquad
\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions A_{1}, \ldots, A_{n} is taken, then also B has to be taken
\Rightarrow binary variables $y_{A_{1}}, \ldots, y_{A_{n}}, y_{B} \in\{0,1\}$, same meaning as above
$\Rightarrow y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}} \quad \Rightarrow$ possibly bad if n is large (big-M constraints)
\triangleright Triggering: if some value exceeds a given threshold, then B happens
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow B$ happens
$\Rightarrow(\ldots$ linear expression for value... $) \leq T+M \cdot y \quad$ (T : threshold, M : big enough value)
\triangleright Special case: if all of decisions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ are taken, then B has to be taken

```
=> y y
```

\triangleright Implication: if decision A is taken, then also decision B has to be taken
\Rightarrow binary variables $y_{\mathrm{A}}, y_{\mathrm{B}} \in\{0,1\}$, meaning: $y_{*}=1 \Leftrightarrow$ take decision $*$
$\Rightarrow y_{\mathrm{A}} \leq y_{\mathrm{B}}$
\triangleright Similarly: if any one of decisions A_{1}, \ldots, A_{n} is taken, then also B has to be taken
\Rightarrow binary variables $y_{A_{1}}, \ldots, y_{A_{n}}, y_{B} \in\{0,1\}$, same meaning as above
$\Rightarrow y_{\mathrm{A}_{1}}+\ldots+y_{\mathrm{A}_{n}} \leq n \cdot y_{\mathrm{B}} \quad \Rightarrow$ possibly bad if n is large (big-M constraints)
\triangleright Triggering: if some value exceeds a given threshold, then B happens
\Rightarrow binary variable $y \in\{0,1\}$, meaning: $y=1 \Leftrightarrow B$ happens
$\Rightarrow \quad(\ldots$ linear expression for value... $) \leq T+M \cdot y \quad(T$: threshold, M : big enough value)
\triangleright Special case: if all of decisions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ are taken, then B has to be taken

```
m}\mp@subsup{y}{\mp@subsup{\textrm{A}}{1}{}}{}+\ldots+\mp@subsup{y}{\mp@subsup{\textrm{A}}{n}{}}{}\leqn-1+\mp@subsup{y}{\textrm{B}}{
```

\triangleright Even more complicated logical relations are possible by combining constraints...
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright Branch \& Bound, Cutting Planes; More Examples; Combinatorial Optimization
\triangleright Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Oral exam
(GPE)

