Mathematical Tools for Engineering and Management

Lecture 5

16 Nov 2011

- ▷ Models, Data and Algorithms
- ▷ Linear Optimization

- ▷ Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling
- ▷ Branch & Bound, Cutting Planes; More Examples; Combinatorial Optimization
- > Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ Complexity Theory
- Nonlinear Optimization
- ▷ Scheduling
- ▷ Lot Sizing
- Multicriteria Optimization
- \triangleright Oral exam

▷ Production Planning in Automobile Industry

Product	Beetle	Cabrio	
Revenue	\$10000	\$20000	
Manufacturing	5h	3h	
Assembly	4h	7h	
Raw material	400kg	400kg	

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
- ➡ Question: How many cars of each type should be produced to maximize the profit?

▷ Production Planning in Automobile Industry

Product	Beetle	Cabrio	
Revenue	\$10000	\$14000	
Manufacturing	5h	3h	
Assembly	4h	7h	
Raw material	400kg	400kg	

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
- ➡ Question: How many cars of each type should be produced to maximize the profit?

.

B

.

••••

••••

 \triangleleft

••••

••••

 \triangleright

 \triangleright

General form of (mixed) integer programs

 The LP obtained by skipping all of the integrality constraints is called the Linear Programming Relaxation of the (M)IP

$$x_j$$
 integer for all $j=1,\ldots,\ell$

 \triangleright

 \triangleright

➡ Binary variables used to model yes/no decisions

Product	Beetle	Cabrio
Revenue	\$10000	\$14000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 8000kg

 \triangleright

Product	Beetle	Cabrio
Revenue	\$10000	\$14000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 8000kg
- ▷ Additional Options: Investments in manufacturing and/or assembly units

 \triangleright

Product	Beetle	Cabrio
Revenue	\$10000	\$14000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 8000kg
- ▷ Additional Options: Investments in manufacturing and/or assembly units

	Investment	Extra Cap.
Manufacturing	\$10000	19h
Assembly, Option 1	\$10000	20h
Assembly, Option 2	\$25000	32h
Assembly, Option 3	\$40000	45h

Product	Beetle	Cabrio
Revenue	\$10000	\$14000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 8000kg
- ▷ Additional Options: Investments in manufacturing and/or assembly units

	Investment	Extra Cap.	
Manufacturing	\$10000	19h	Budget for investment:
Assembly, Option 1	\$10000	20h	max. \$50000
Assembly, Option 2	\$25000	32h	
Assembly, Option 3	\$40000	45h	

 \triangleright

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$ (time spent in each department) $t_{\text{beetle},d} x_{\text{beetle}} + t_{\text{cabrio},d} x_{\text{cabrio}} \leq T_d$ for all $d \in D$ (non-negativity of variables) $x_c \geq 0$ for all $c \in C$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

(time spent in each department) $t_{\text{beetle},d}x_{\text{beetle}} + t_{\text{cabrio},d}x_{\text{cabrio}} \leq T_d$ for all $d \in D$

(integrality of variables)

 $x_c \ge 0$ for all $c \in C$ x_c integer for all $c \in C$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

(time spent in each department) $t_{\text{beetle},d}x_{\text{beetle}} + t_{\text{cabrio},d}x_{\text{cabrio}} \leq T_d$ for all $d \in D$

(0/1 decision variables)

(integrality of variables)

 $y_{man1}, y_{ass1}, y_{ass2}, y_{ass3} \in \{0, 1\}$

 $x_c \geq 0$ for all $c \in C$

 x_c integer for all $c \in C$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

(time spent in each department) $t_{\text{beetle},d}x_{\text{beetle}} + t_{\text{cabrio},d}x_{\text{cabrio}} \leq T_d$ for all $d \in D$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

(time spent in each department) $t_{\text{beetle},d}x_{\text{beetle}} + t_{\text{cabrio},d}x_{\text{cabrio}} \leq T_d$ for all $d \in D$

 \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

(time spent in each department) $t_{\text{beetle},d}x_{\text{beetle}} + t_{\text{cabrio},d}x_{\text{cabrio}} \leq T_d$ for all $d \in D$

 \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$

 \triangleright New parameters: investment capital $b_{man1} = 10, b_{ass1} = 10, b_{ass2} = 25, b_{ass3} = 40$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$ (time spent in each department) $t_{\text{beetle},d} x_{\text{beetle}} + t_{\text{cabrio},d} x_{\text{cabrio}} \leq T_d$ for all $d \in D$

(available budget) $b_{man1}y_{man1} + b_{ass1}y_{ass1} + b_{ass2}y_{ass2} + b_{ass3}y_{ass3} \leq B$

- $\begin{array}{ll} (0/1 \text{ decision variables}) & y_i \in \{0,1\} \text{ for all } i \in I \\\\ (\text{integrality of variables}) & x_c \geq 0 \text{ for all } c \in C \\\\ x_c & \text{integer for all } c \in C \end{array}$
- \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$
- \triangleright New parameters: investment capital $b_{man1} = 10, b_{ass1} = 10, b_{ass2} = 25, b_{ass3} = 40$

•••••
Objective function: maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

(time spent in each department) $t_{\text{beetle},d} x_{\text{beetle}} + t_{\text{cabrio},d} x_{\text{cabrio}} \leq T_d$ for all $d \in D$

(available budget)
$$\sum_{i \in I} b_i y_i \leq B$$
(0/1 decision variables) $y_i \in \{0,1\}$ for all $i \in I$ (integrality of variables) $x_c \geq 0$ for all $c \in C$ x_c integer for all $c \in C$

 \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$

 $\triangleright \quad \text{New parameters: investment capital} \quad b_{\mathsf{man1}} = 10, \\ b_{\mathsf{ass1}} = 10, \\ b_{\mathsf{ass2}} = 25, \\ b_{\mathsf{ass3}} = 40$

Objective function: maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

(total raw material available) $\rho_{\text{beetle}} x_{\text{beetle}} + \rho_{\text{cabrio}} x_{\text{cabrio}} \leq R$

(time spent in each department) $t_{\text{beetle},d}x_{\text{beetle}} + t_{\text{cabrio},d}x_{\text{cabrio}} \leq T_d$ for all $d \in D$

(available budget)
$$\sum_{i \in I} b_i y_i \leq B$$
(0/1 decision variables) $y_i \in \{0,1\}$ for all $i \in I$ (integrality of variables) $x_c \geq 0$ for all $c \in C$ x_c integer for all $c \in C$

 \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$

 $\triangleright \quad \text{New parameters: investment capital} \quad b_{\mathsf{man1}} = 10, b_{\mathsf{ass1}} = 10, b_{\mathsf{ass2}} = 25, b_{\mathsf{ass3}} = 40$ additional capacities $\tau_{\mathsf{man1}} = 19, \tau_{\mathsf{ass1}} = 20, \tau_{\mathsf{ass2}} = 32, \tau_{\mathsf{ass3}} = 45$

Obj	ectiv	e function: maximize (total reve	enue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$	
С		(total raw material available)	$ ho_{ extsf{beetle}} x_{ extsf{beetle}} + ho_{ extsf{cabrio}} x_{ extsf{cabrio}} \ \leq \ R$	
		(time spent in manufacturing)	$\sum_{c \in C} t_{c,\max} x_c - \tau_{\min} y_{\min} \le T_{\min}$	
		(available budget)	$\sum_{i \in I} b_i y_i \leq B$	
V		(0/1 decision variables)	$y_i \in \{0,1\}$ for all $i \in I$	
	1	(integrality of variables)	$x_c \ge 0$ for all $c \in C$ x_c integer for all $c \in C$	
\triangleright	Nev	v set: investment decisions $I = -$	$\{man1, ass1, ass2, ass3\}$	
\triangleright	Nev	v parameters: investment capital	$b_{\text{man1}} = 10, b_{\text{ass1}} = 10, b_{\text{ass2}} = 25, b_{\text{ass3}} = 40$	

additional capacities $\tau_{man1} = 19, \tau_{ass1} = 20, \tau_{ass2} = 32, \tau_{ass3} = 45$

Objective function: maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$			
С	(total raw material available)	$ ho_{ extsf{beetle}} x_{ extsf{beetle}} + ho_{ extsf{cabrio}} x_{ extsf{cabrio}} \ \leq \ R$	
	(time spent in manufacturing)	$\sum_{c \in C} t_{c, \max} x_c - au_{\max} y_{\max} \le T_{\max}$	
	(time spent in assembly)	$\sum_{c \in C} t_{c,\text{ass}} x_c \leq T_{\text{ass}} + \tau_{\text{ass1}} y_{\text{ass1}} + \tau_{\text{ass2}} y_{\text{ass2}} + \tau_{\text{ass3}} y_{\text{ass3}}$	
	(available budget)	$\sum_{i \in I} b_i y_i \leq B$	
V	(0/1 decision variables)	$y_i \in \{0,1\}$ for all $i \in I$	
-	(integrality of variables)	$x_c \geq 0$ for all $c \in C$	
		x_c integer for all $c \in C$	

- \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$
- $\triangleright \quad \text{New parameters: investment capital} \quad b_{\text{man1}} = 10, b_{\text{ass1}} = 10, b_{\text{ass2}} = 25, b_{\text{ass3}} = 40$ additional capacities $\tau_{\text{man1}} = 19, \tau_{\text{ass1}} = 20, \tau_{\text{ass2}} = 32, \tau_{\text{ass3}} = 45$

Objective function: maximize (total revenue) $r_{\text{beetle}} \cdot x_{\text{beetle}} + r_{\text{cabrio}} \cdot x_{\text{cabrio}}$

(total raw material available)	$ ho_{ extsf{beetle}} x_{ extsf{beetle}} + ho_{ extsf{cabrio}} x_{ extsf{cabrio}} \ \leq \ R$	
(time spent in manufacturing)	$\sum_{c \in C} t_{c, \max} x_c - au_{\max 1} y_{\max 1} \leq T_{\max 1}$	
(time spent in assembly)	$\sum_{c \in C} t_{c, \text{ass}} x_c \leq T_{\text{ass}} + \sum_{i \in \{\text{ass1}, \text{ass2}, \text{ass3}\}} \tau_i y_i$	
(available budget)	$\sum_{i \in I} b_i y_i \leq B$	
(0/1 decision variables)	$y_i \in \{0,1\}$ for all $i \in I$	
(integrality of variables)	$x_c \geq 0$ for all $c \in C$	
(integraticy of variables)	x_c integer for all $c \in C$	

- \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$
- $\triangleright \quad \text{New parameters: investment capital} \quad b_{\text{man1}} = 10, b_{\text{ass1}} = 10, b_{\text{ass2}} = 25, b_{\text{ass3}} = 40$ additional capacities $\tau_{\text{man1}} = 19, \tau_{\text{ass1}} = 20, \tau_{\text{ass2}} = 32, \tau_{\text{ass3}} = 45$

(total raw material available)	$ ho_{ extsf{beetle}} x_{ extsf{beetle}} + ho_{ extsf{cabrio}} x_{ extsf{cabrio}} \leq R$
(time spent in manufacturing)	$\sum_{c \in C} t_{c, \max} x_c - au_{\max} y_{\max} \le T_{\max}$
(time spent in assembly)	$\sum_{c \in C} t_{c, \text{ass}} x_c - \sum_{i \in \{\text{ass1}, \text{ass2}, \text{ass3}\}} \tau_i y_i \leq T_{\text{ass}}$
(available budget)	$\sum_{i\in I} b_i y_i \; \leq \; B$
(0/1 decision variables)	$y_i \in \{0,1\}$ for all $i \in I$
(integrality of variables)	$x_c \geq 0$ for all $c \in C$
(integranty of variables)	x_c integer for all $c \in C$

- \triangleright New set: investment decisions $I = \{man1, ass1, ass2, ass3\}$
- $\triangleright \quad \text{New parameters: investment capital} \quad b_{\text{man1}} = 10, b_{\text{ass1}} = 10, b_{\text{ass2}} = 25, b_{\text{ass3}} = 40$ additional capacities $\tau_{\text{man1}} = 19, \tau_{\text{ass1}} = 20, \tau_{\text{ass2}} = 32, \tau_{\text{ass3}} = 45$

•••••

optimal IP solution

# beetles	4
# cabrios	15
manufact. investment option	1
assembly investment option 1	1
assembly investment option 2	1
assembly investment option 3	0

optimal IP solution				
# beetles	4	_,		
# cabrios	15	constraints	used up	available
manufact. investment option	1	manufact. time	65	50 +19
assembly investment option 1	1	assembly time	121	70 +20 +32
assembly investment option 2	1	raw material	7600	8000
assembly investment option 3	0	budget	10T + 10T + 25T	50T

optimal IP solution

# beetles	4
# cabrios	15
manufact. investment option	1
assembly investment option 1	1
assembly investment option 2	1
assembly investment option 3	0

optimum of the LP relaxation

# beetles	0
# cabrios	19.197151
manu. invest.	0.399550
assembly invest. option 1	1
assembly invest. option 2	1
assembly invest. option 3	0.275112

⇒	revenue: \$250000	
constraints	used up	available
manufact. time	65	50 +19
assembly time	121	70 +20 +32
raw material	7600	8000
budget	10T + 10T + 25T	50T

→ revenue: \$268760.12

constraints	used up	available	
manufact. time	57.59145	57.59145	
assembly time	134.38	134.38004	
raw material	7678.8604	8000	
budget	50T	50T	

▷ Increase an existing capacity (yes/no decision)

- ▷ Increase an existing capacity (yes/no decision)
 - ➡ binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity

- Increase an existing capacity (yes/no decision) \triangleright
 - ➡ binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity

(...used up capacity...) $\leq T + \tau \cdot y$ (*T*: existing capacity, τ : additional capacity)

- ▷ Increase an existing capacity (yes/no decision)
 - ➡ binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity

(T: existing capacity, τ : additional capacity)

- ▷ Increase an existing capacity (yes/no decision)
 - ➡ binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity
 - (...used up capacity...) $-\tau \cdot y \leq T$ (T: existing capacity, τ : additional capacity)
- ▷ Install a number of (capacity-increasing) devices

- ▷ Increase an existing capacity (yes/no decision)
 - ➡ binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity
 - (...used up capacity...) $-\tau \cdot y \leq T$ (T: existing capacity, τ : additional capacity)
- ▷ Install a number of (capacity-increasing) devices
 - \blacktriangleright integer variable $z \in \mathbf{z}$, meaning: z = number of devices

- Increase an existing capacity (yes/no decision) \triangleright
 - ➡ binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity
 - (...used up capacity...) $-\tau \cdot y \leq T$ (T: existing capacity, τ : additional capacity)
- Install a number of (capacity-increasing) devices \triangleright
 - ightarrow integer variable $z \in z$, meaning: z = number of devices
 - (...used up capacity...) $\tau \cdot z \leq T$ (au: additional capacity per device)

- Increase an existing capacity (yes/no decision) \triangleright
 - → binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity
 - (...used up capacity...) $-\tau \cdot y \leq T$ (T: existing capacity, τ : additional capacity)
- Install a number of (capacity-increasing) devices \triangleright
 - \rightarrow integer variable $z \in z$, meaning: z = number of devices
 - (...used up capacity...) $\tau \cdot z \leq T$ (τ : additional capacity per device)

Choose between various options to increase capacity \triangleright

- Increase an existing capacity (yes/no decision) \triangleright
 - → binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity
 - $(\dots$ used up capacity...) $\tau \cdot y \leq T$ $(T: existing capacity, \tau: additional capacity)$
- Install a number of (capacity-increasing) devices \triangleright
 - \rightarrow integer variable $z \in z$, meaning: z = number of devices
 - (...used up capacity...) $au \cdot z \leq T$ (au: additional capacity per device)

- Choose between various options to increase capacity \triangleright
 - ➡ binary variables $y_1, \ldots, y_n \in \{0, 1\}$, meaning: $y_i = 1 \Leftrightarrow$ choose option i

- Increase an existing capacity (yes/no decision) \triangleright
 - \Rightarrow binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity
 - (...used up capacity...) $-\tau \cdot y \leq T$ (T: existing capacity, τ : additional capacity)
- Install a number of (capacity-increasing) devices
 - ightarrow integer variable $z \in z$, meaning: z = number of devices
 - (...used up capacity...) $- au \cdot z \leq T$ (au: additional capacity per device)

- Choose between various options to increase capacity \triangleright
 - ➡ binary variables $y_1, \ldots, y_n \in \{0, 1\}$, meaning: $y_i = 1 \Leftrightarrow$ choose option i

• (...used up capacity...) $-\sum au_i \cdot y_i \leq T$ (au_i : add. capacity available through option i)

- Increase an existing capacity (yes/no decision) \triangleright
 - \Rightarrow binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow$ invest to increase capacity
 - (...used up capacity...) $-\tau \cdot y \leq T$ (T: existing capacity, τ : additional capacity)
- Install a number of (capacity-increasing) devices \triangleright
 - \rightarrow integer variable $z \in z$, meaning: z = number of devices
 - (...used up capacity...) $au \cdot z \leq T$ (au: additional capacity per device)

- Choose between various options to increase capacity \triangleright
 - ➡ binary variables $y_1, \ldots, y_n \in \{0, 1\}$, meaning: $y_i = 1 \Leftrightarrow$ choose option i

• (...used up capacity...) $-\sum au_i \cdot y_i \leq T$ (au_i : add. capacity available through option i)

- Common extension: only one of the available options can be chosen \triangleright
 - \rightarrow add set packing constraints for the y_i 's...

- ▷ Set packing constraints:
 - \implies choose at most one of the binary variables y_1, \ldots, y_n

- ▷ Set packing constraints:
 - \implies choose at most one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n \leq 1$

- ▷ Set packing constraints:
 - \implies choose at most one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow \quad y_1 + y_2 + \ldots + y_n \leq 1$
- ▷ Set covering constraints:
 - \implies choose at least one of the binary variables y_1, \ldots, y_n

- ▷ Set packing constraints:
 - \implies choose at most one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow \quad y_1 + y_2 + \ldots + y_n \leq 1$
- ▷ Set covering constraints:
 - \implies choose at least one of the binary variables y_1, \ldots, y_n

- ▷ Set packing constraints:
 - \blacktriangleright choose at most one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n \leq 1$
- ▷ Set covering constraints:
 - \blacktriangleright choose at least one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow \quad y_1 + y_2 + \ldots + y_n \geq 1$
- ▷ Set partitioning constraints:
 - \blacktriangleright choose exactly one of the binary variables y_1, \ldots, y_n

- ▷ Set packing constraints:
 - \Rightarrow choose at most one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n \leq 1$
- ▷ Set covering constraints:
 - \blacktriangleright choose at least one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n \ge 1$
- ▷ Set partitioning constraints:
 - \blacktriangleright choose exactly one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n = 1$

▷ Set packing constraints:

- \blacktriangleright choose at most one of the binary variables y_1, \ldots, y_n
- $\Rightarrow \quad y_1 + y_2 + \ldots + y_n \leq 1$
- ▷ Set covering constraints:
 - \blacktriangleright choose at least one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n \ge 1$
- ▷ Set partitioning constraints:
 - \blacktriangleright choose exactly one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n = 1$
- ▷ Similarly for arbitrary (integer!) quantity on the RHS:
 - \blacktriangleright choose at most/at least/exactly k of the binary variables y_1, \ldots, y_n

▷ Set packing constraints:

- lacksim choose at most one of the binary variables y_1,\ldots,y_n
- $\Rightarrow \quad y_1 + y_2 + \ldots + y_n \leq 1$
- ▷ Set covering constraints:
 - \blacktriangleright choose at least one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n \ge 1$
- ▷ Set partitioning constraints:
 - \blacktriangleright choose exactly one of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n = 1$
- ▷ Similarly for arbitrary (integer!) quantity on the RHS:
 - \blacktriangleright choose at most/at least/exactly k of the binary variables y_1, \ldots, y_n
 - $\Rightarrow y_1 + y_2 + \ldots + y_n \leq k / \geq k / = k$

 \triangleright Implication: if decision A is taken, then also decision B has to be taken

- \triangleright Implication: if decision A is taken, then also decision B has to be taken
 - ➡ binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

- \triangleright Implication: if decision A is taken, then also decision B has to be taken
 - ➡ binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *
 - \Rightarrow $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- \triangleright Implication: if decision A is taken, then also decision B has to be taken
 - ➡ binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

• $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- \triangleright Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken
 - → binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above

- ▷ Implication: if decision A is taken, then also decision B has to be taken
 - ➡ binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

• $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- \triangleright Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken
 - ➡ binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above

 $\Rightarrow y_{\mathsf{A}_1} + \ldots + y_{\mathsf{A}_n} \leq n \cdot y_{\mathsf{B}}$

- \triangleright Implication: if decision A is taken, then also decision B has to be taken
 - ➡ binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

• $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- \triangleright Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken
 - ➡ binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above
 - $\Rightarrow y_{\mathsf{A}_1} + \ldots + y_{\mathsf{A}_n} \leq n \cdot y_{\mathsf{B}}$
- \rightarrow possibly bad if *n* is large (big-M constraints)

- Implication: if decision A is taken, then also decision B has to be taken \triangleright
 - → binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

 $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken \triangleright
 - → binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above
- $y_{A_1} + \ldots + y_{A_n} \leq n \cdot y_B \implies possibly bad if n is large (big-M constraints)$
- Triggering: if some value exceeds a given threshold, then B happens \triangleright

- Implication: if decision A is taken, then also decision B has to be taken \triangleright
 - → binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

 $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken \triangleright
 - → binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above
- $y_{A_1} + \ldots + y_{A_n} \leq n \cdot y_B \implies possibly bad if n is large (big-M constraints)$
- Triggering: if some value exceeds a given threshold, then B happens \triangleright
 - binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow \mathsf{B}$ happens

- Implication: if decision A is taken, then also decision B has to be taken \triangleright
 - ➡ binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

 $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken \triangleright
 - → binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above
- $y_{A_1} + \ldots + y_{A_n} \leq n \cdot y_B \implies possibly bad if n is large (big-M constraints)$
- Triggering: if some value exceeds a given threshold, then B happens \triangleright
 - binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow B$ happens
 - (...linear expression for value...) $\leq T + M \cdot y$ (T: threshold, M: big enough value)

- Implication: if decision A is taken, then also decision B has to be taken \triangleright
 - → binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

 $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken \triangleright
 - → binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above
- $y_{A_1} + \ldots + y_{A_n} \leq n \cdot y_B \implies possibly bad if n is large (big-M constraints)$
- Triggering: if some value exceeds a given threshold, then B happens \triangleright
 - binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow B$ happens
 - (...linear expression for value...) $\leq T + M \cdot y$ (T: threshold, M: big enough value)
- Special case: if all of decisions A_1, \ldots, A_n are taken, then B has to be taken \triangleright

- Implication: if decision A is taken, then also decision B has to be taken \triangleright
 - → binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

 $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken \triangleright
 - → binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above
- $y_{A_1} + \ldots + y_{A_n} \leq n \cdot y_B \implies possibly bad if n is large (big-M constraints)$
- Triggering: if some value exceeds a given threshold, then B happens \triangleright
 - binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow B$ happens
 - (...linear expression for value...) $\leq T + M \cdot y$ (T: threshold, M: big enough value)
- Special case: if all of decisions A_1, \ldots, A_n are taken, then B has to be taken \triangleright

$$\Rightarrow y_{\mathsf{A}_1} + \ldots + y_{\mathsf{A}_n} \leq n - 1 + y_{\mathsf{B}}$$

- Implication: if decision A is taken, then also decision B has to be taken \triangleright
 - → binary variables $y_A, y_B \in \{0, 1\}$, meaning: $y_* = 1 \Leftrightarrow$ take decision *

 $y_{\mathsf{A}} \leq y_{\mathsf{B}}$

- Similarly: if any one of decisions A_1, \ldots, A_n is taken, then also B has to be taken \triangleright
 - → binary variables $y_{A_1}, \ldots, y_{A_n}, y_{B} \in \{0, 1\}$, same meaning as above
- $y_{A_1} + \ldots + y_{A_n} \leq n \cdot y_B \implies possibly bad if n is large (big-M constraints)$
- Triggering: if some value exceeds a given threshold, then B happens \triangleright
 - binary variable $y \in \{0, 1\}$, meaning: $y = 1 \Leftrightarrow B$ happens
 - (...linear expression for value...) $\leq T + M \cdot y$ (T: threshold, M: big enough value)
- Special case: if all of decisions A_1, \ldots, A_n are taken, then B has to be taken \triangleright
 - $y_{\mathsf{A}_1} + \ldots + y_{\mathsf{A}_n} \leq n 1 + y_{\mathsf{B}}$
- Even more complicated logical relations are possible by combining constraints... \triangleright

- ▷ Models, Data and Algorithms
- ▷ Linear Optimization

- ▷ Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling
- ▷ Branch & Bound, Cutting Planes; More Examples; Combinatorial Optimization
- > Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ Complexity Theory
- Nonlinear Optimization
- ▷ Scheduling
- ▷ Lot Sizing
- Multicriteria Optimization
- \triangleright Oral exam

