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� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� Branch & Bound, Cutting Planes; More Examples; Combinatorial Optimization

� Combinatorial Optimization: Examples, Graphs, Algorithms

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Oral exam

···············



� Changing objective – production planning revisited �

� Production Planning in Automobile Industry

Product Beetle Cabrio

Revenue $10000 $20000

Manufacturing 5h 3h

Assembly 4h 7h

Raw material 400kg 400kg

Plant capacity and available raw materials:

• Manufacturing capacity: 50h

• Assembly capacity: 70h

• Raw material: 4500kg

➡ Question: How many cars of each type should be produced to maximize the profit?
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➡ compute optimal solution:

4xb + 4xc = 45

4xb + 7xc = 70
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➡ compute optimal solution:

4xb + 4xc = 45

4xb + 7xc = 70

➡ (xb, xc) =

(

35

12
,
25

3

)

≈ (2.91667, 8.33333)
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➡ compute optimal solution:

4xb + 4xc = 45

4xb + 7xc = 70

➡ (xb, xc) =

(

35

12
,
25

3

)

≈ (2.91667, 8.33333)

➡ How to produce 2.91667 beetles,

or 8.33333 cabrios?!
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� Interpretation and validity of the solution! �

Real World Mathematical World

Real-World Problem Mathematical Model

Solution Solution Algorithms

Representation

Implementation

Execution

Interpretation
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� General form of (mixed) integer programs �

maximize/minimize

n
∑

j=1

cjxj Objective function

subject to

n
∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m C

ℓj ≤ xj ≤ uj for all j = 1, . . . , n V
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� General form of (mixed) integer programs �

maximize/minimize

n
∑

j=1

cjxj Objective function

subject to

n
∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m C

ℓj ≤ xj ≤ uj for all j = 1, . . . , n V

xj integer for all j = 1, . . . , n➡ Integer Program

(ℓ < n)xj integer for all j = 1, . . . , ℓ➡ Mixed Integer Program

➡ The LP obtained by skipping all of the integrality constraints is called the

Linear Programming Relaxation of the (M)IP
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� Special case: Binary MIP models �
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� Special case: Binary MIP models �

maximize/minimize

n
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cjxj Objective function
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n
∑
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ℓj ≤ xj ≤ uj for all j = ℓ+ 1, . . . , n V

xj integer for all j = 1, . . . , ℓ

(ℓ < n)0 ≤ xj ≤ 1 for all j = 1, . . . , ℓ

m

(ℓ < n)xj ∈ {0, 1} for all j = 1, . . . , ℓ

➡ Binary variables used to model yes/no decisions
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� Production planning with binary decisions �

� Original problem: How many cars should be produced to maximize the profit?

Product Beetle Cabrio

Revenue $10000 $14000

Manufacturing 5h 3h

Assembly 4h 7h

Raw material 400kg 400kg

Plant capacity and available raw materials:

• Manufacturing capacity: 50h

• Assembly capacity: 70h

• Raw material: 8000kg
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Raw material 400kg 400kg

Plant capacity and available raw materials:

• Manufacturing capacity: 50h
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Investment Extra Cap.
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� Production planning with binary decisions �

� Original problem: How many cars should be produced to maximize the profit?

Product Beetle Cabrio

Revenue $10000 $14000

Manufacturing 5h 3h

Assembly 4h 7h

Raw material 400kg 400kg

Plant capacity and available raw materials:

• Manufacturing capacity: 50h

• Assembly capacity: 70h

• Raw material: 8000kg

� Additional Options: Investments in manufacturing and/or assembly units

Investment Extra Cap.

Manufacturing $10000 19h

Assembly, Option 1 $10000 20h

Assembly, Option 2 $25000 32h

Assembly, Option 3 $40000 45h

Budget for investment:

max. $50000
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� Production planning: binary IP model �

Objective function: maximize (total revenue) rbeetle · xbeetle + rcabrio · xcabrio

C
(total raw material available) ρbeetlexbeetle + ρcabrioxcabrio ≤ R

(time spent in each department) tbeetle,dxbeetle + tcabrio,dxcabrio ≤ Td for all d ∈ D

V (non-negativity of variables) xc ≥ 0 for all c ∈ C
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Objective function: maximize (total revenue) rbeetle · xbeetle + rcabrio · xcabrio
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� Production planning: binary IP results �

optimal IP solution

# beetles 4

# cabrios 15

manufact. investment option 1

assembly investment option 1 1

assembly investment option 2 1

assembly investment option 3 0

➡ revenue: $250000

constraints used up available

manufact. time 65 50 +19

assembly time 121 70 +20 +32

raw material 7600 8000

budget 10T + 10T + 25T 50T

optimum of the LP relaxation

# beetles 0

# cabrios 19.197151

manu. invest. 0.399550

assembly invest. option 1 1

assembly invest. option 2 1

assembly invest. option 3 0.275112

➡ revenue: $268760.12

constraints used up available

manufact. time 57.59145 57.59145

assembly time 134.38 134.38004

raw material 7678.8604 8000

budget 50T 50T

···············



� Mixed Integer Programming models �

maximize/minimize

n
∑

j=1

cjxj Objective function

subject to

n
∑

j=1

aijxj ≤ bi for all i = 1, . . . ,m C

ℓj ≤ xj ≤ uj for all j = 1, . . . , n V

LP-

relaxation







































xj integer for all j = 1, . . . , n➡ Integer Program

(ℓ < n)xj integer for all j = 1, . . . , ℓ➡ Mixed Integer Program

xj ∈ {0, 1} for all j = 1, . . . , ℓ➡ Binary variables:

···············
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� Increase an existing capacity (yes/no decision)

➡ binary variable y ∈ {0, 1}, meaning: y = 1 ⇔ invest to increase capacity

➡ (...used up capacity...) ≤ T + τ · y (T : existing capacity, τ : additional capacity)➡ (...used up capacity...)− τ · y ≤ T

� Install a number of (capacity-increasing) devices

➡ integer variable z ∈ Z , meaning: z = number of devices

➡ (...used up capacity...)− τ · z ≤ T (τ : additional capacity per device)

� Choose between various options to increase capacity

➡ binary variables y1, . . . , yn ∈ {0, 1}, meaning: yi = 1 ⇔ choose option i

➡ (...used up capacity...)−
n
∑

i=1

τi · yi ≤ T (τi: add. capacity available through option i)

� Common extension: only one of the available options can be chosen

➡ add set packing constraints for the yi’s...
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� Even more complicated logical relations are possible by combining constraints...
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